
 INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING, VOL.5, NO.7., JULY 2024.

PAVAN P Y., ET.AL.: DESIGNING CUSTOM STATE MACHINE INSTEAD OF ANIMATION STATE MACHINE IN UNITY FOR DEVELOPING
3RD PERSON ACTION GAME 95

Abstract— The gaming industry has experienced unprecedented
growth, evolving into a global powerhouse with diverse platforms
and a vast consumer base. Market leaders such as Sony, Microsoft,
and Nintendo continue to dominate the console space, while PC
gaming thrives with companies like Valve and Epic Games. Mobile
gaming, led by giants like Tencent and Apple, has become a major
revenue driver, reaching billions of users worldwide. The rise of
cloud gaming services, exemplified by Google Stadia and
Microsoft's xCloud, signals a shift toward accessible, subscription-
based gaming experiences. In this regard, the choice of a game
development engine depends on the project's requirements, the
team's expertise, and the desired platform. Unity and Unreal
Engine stand out as industry leaders, each with its strengths and
use cases, while other engines like Godot, CryEngine, and
Lumberyard cater to specific needs within the diverse landscape
of game development. Unity is a versatile and widely used game
development engine known for its accessibility, cross-platform
support, and flexibility. It enables developers to create 2D, 3D,
augmented reality (AR), and virtual reality (VR) games. Unity
uses C# as its primary scripting language and offers a robust Asset
Store for pre-built assets and plugins. Design pattern
implementation serves as the backbone of game development due
to its pivotal role in enhancing code structure, scalability, and
maintainability. By incorporating design patterns, developers can
streamline the development process, leading to more efficient
workflows and reduced development time. These patterns provide
standardized solutions to common design problems, promoting
code reuse and modularization, which are crucial for managing
the complexity of game systems. Additionally, design patterns
facilitate collaboration among team members by establishing a
common language and framework for communication. They
enable developers to create flexible and adaptable codebases that
can easily accommodate changes and updates throughout the
development lifecycle. Furthermore, design patterns promote best
practices and coding standards, leading to cleaner, more readable
code that is easier to debug and maintain. In the dynamic and fast-
paced world of game development, where innovation and iteration
are key, design patterns provide a solid foundation upon which
developers can build immersive and engaging gaming experiences.
The use of animation state machines in Unity for 3rd person action
games introduces a range of challenges, encompassing
synchronization issues, performance bottlenecks, responsiveness
concerns, visual glitches, scalability limitations, and collaboration
difficulties. Addressing these challenges is imperative to ensure the

development of immersive, fluid, and engaging gaming
experiences that meet the expectations of modern gamers. The
proposed method aims to develop a custom state machine which
will provide several benefits like Flexibility and Control, Seamless
Integration with Game Logic, Responsive and Realistic Gameplay,
Optimized Performance, Dynamic State Changes that are
adaptable to changing conditions, Scalability and Support for
Non-Animation States.

Index Terms—Animation State Machine, Unity Real-Time
Development Platform, State Machine Design Pattern, Cross-
Platform Development, Direct Script Integration.

1. Introduction
The gaming industry has experienced unprecedented growth,

evolving into a global powerhouse with diverse platforms and
a vast consumer base. Market leaders such as Sony, Microsoft,
and Nintendo continue to dominate the console space, while PC
gaming thrives with companies like Valve and Epic Games.
Mobile gaming, led by giants like Tencent and Apple, has
become a major revenue driver, reaching billions of users
worldwide. The rise of cloud gaming services, exemplified by
Google Stadia and Microsoft's xCloud, signals a shift toward
accessible, subscription-based gaming experiences. Revenue
projections for the next decade suggest sustained industry
expansion, with estimates surpassing $200 billion annually.
Emerging technologies like virtual reality (VR) and augmented
reality (AR) are poised to play a pivotal role, offering
immersive and innovative gaming experiences. Esports, led by
organizations like Tencent-owned Riot Games and Activision
Blizzard, continues its meteoric rise, attracting massive
audiences and lucrative sponsorships.

Designing Custom State Machine Instead
of Animation State Machine in Unity for
Developing 3rd Person Action Game

Pavan P Y1, Shanu Gour2, Lalit Kumar P Bhaiya3
1Student, Department of CSE, Bharti Vishwavidyalaya, Durg, Chhattisgarh, India

2Assistant Professor, Department of CSE, Bharti Vishwavidyalaya, Durg, Chhattisgarh, India
3Associate Professor, Department of CSE, Bharti Vishwavidyalaya, Durg, Chhattisgarh, India

Corresponding Author: pavanpy444@gmail.com

Manuscript revised July 10, 2024; accepted July 11,
2024. Date of publication July 15, 2024.
This paper available online at www.ijprse.com
ISSN (Online): 2582-7898; SJIF: 5.59

http://www.ijprse.com/

 INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING, VOL.5, NO.7., JULY 2024.

PAVAN P Y., ET.AL.: DESIGNING CUSTOM STATE MACHINE INSTEAD OF ANIMATION STATE MACHINE IN UNITY FOR DEVELOPING
3RD PERSON ACTION GAME 96

 The ongoing integration of blockchain and non-fungible
tokens (NFTs) into gaming ecosystems further exemplifies the
industry's adaptability and willingness to embrace cutting-edge
technologies. As gaming becomes increasingly intertwined
with other forms of entertainment and social interaction, the
industry's future seems promising, characterized by continuous
innovation, diverse gaming experiences, and a flourishing
global market. In this regard, the choice of a game development
engine depends on the project's requirements, the team's
expertise, and the desired platform. Unity and Unreal Engine
stand out as industry leaders, each with its strengths and use
cases, while other engines like Godot, CryEngine, and
Lumberyard cater to specific needs within the diverse landscape
of game development.

Unity is a versatile and widely used game development
engine known for its accessibility, cross-platform support, and
flexibility. It enables developers to create 2D, 3D, augmented
reality (AR), and virtual reality (VR) games. Unity uses C# as
its primary scripting language and offers a robust Asset Store
for pre-built assets and plugins.

A. Key Features:
• Cross-Platform Development: Unity supports

multiple platforms, including PC, consoles, mobile
devices, and web browsers. This allows developers to
create games for a broad range of devices and
operating systems.

• User-Friendly Interface: Unity's intuitive interface
and drag-and-drop functionality make it accessible
for both beginners and experienced developers. The
visual editor simplifies scene creation, asset
management, and overall game design.

• Large Community and Documentation: Unity boasts
a vast and active community, providing ample
resources for learning and problem-solving.
Extensive documentation, tutorials, and forums
contribute to the engine's accessibility and support.

• Asset Store: The Unity Asset Store is a marketplace
where developers can find and sell assets, plugins,
and tools. This accelerates development by offering a
wide array of pre-built resources.

Unreal Engine, developed by Epic Games, is renowned for
its cutting-edge graphics, realistic physics, and high-quality
visual effects. It is a powerful engine often chosen for AAA
game development, architectural visualization, and immersive
experiences.

B. Key Features:
• High-Quality Graphics: Unreal Engine is acclaimed for

its stunning visuals and realistic rendering capabilities.
It supports advanced graphics features like dynamic
lighting, global illumination, and detailed particle
effects.

• Blueprint Visual Scripting: Unreal Engine offers a
visual scripting system called Blueprints, allowing

developers to create gameplay mechanics and logic
without extensive coding. This makes it accessible to
designers and artists.

• Virtual Production: Unreal Engine gained prominence
in film and TV production for its virtual production
capabilities. It enables real-time rendering on set,
allowing filmmakers to visualize scenes before
shooting.

• Marketplace: Similar to Unity's Asset Store, Unreal
Engine has the Unreal Marketplace, providing a range
of assets, plugins, and tools for developers to enhance
their projects.

C. Other Game Development Engines:
Godot Engine: Godot is an open-source game engine that

supports 2D and 3D game development. It has a unique scene
system, built-in visual script editor, and supports multiple
scripting languages, including GDScript and C#.

CryEngine: CryEngine, known for its impressive graphics, is
utilized for creating visually stunning games. It includes
powerful tools for level design, terrain editing, and rendering
realistic environments.

Lumberyard: Amazon Lumberyard is a game engine
integrated with AWS cloud services. It offers a range of
features, including visual scripting, VR development, and
networking capabilities for online multiplayer games.

2. Literature Review

A. Understanding Design Patterns
Design patterns are recurring solutions to common problems

encountered in software design. They provide a template for
solving specific issues while fostering code reuse,
maintainability, and scalability. Design patterns are not code
snippets but rather high-level templates that guide developers
in crafting effective, modular, and flexible software.
1) Types of Design Patterns

• Singleton Pattern: Ensures a class has only one
instance and provides a global point of access to it.
Useful for scenarios where a single point of control is
necessary, such as managing configurations or
logging.

• Factory Method Pattern: Defines an interface for
creating an object but allows subclasses to alter the
type of objects that will be created. Useful for
designing flexible frameworks where the exact class
of the created object is not known until runtime.

• Adapter Pattern: Allows incompatible interfaces to
work together. It acts as a bridge, enabling the
interface of a class to be used as another interface.
Useful when integrating new features without
modifying existing code.

• Decorator Pattern: Attaches additional
responsibilities to an object dynamically. It provides
a flexible alternative to subclassing for extending

 INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING, VOL.5, NO.7., JULY 2024.

PAVAN P Y., ET.AL.: DESIGNING CUSTOM STATE MACHINE INSTEAD OF ANIMATION STATE MACHINE IN UNITY FOR DEVELOPING
3RD PERSON ACTION GAME 97

functionality. Useful for scenarios where the
composition of behavior is more flexible than static
inheritance.

• Observer Pattern: Defines a one-to-many dependency
between objects, ensuring that when one object
changes state, all its dependents are notified and
updated automatically. Useful for implementing
distributed event handling systems.

• Strategy Pattern: Defines a family of algorithms,
encapsulates each one, and makes them
interchangeable. It lets the client choose the algorithm
at runtime. Useful for scenarios where different
algorithms need to be interchangeable.

B. Benefits of Design Patterns
- Code Reusability and Maintainability
- Design Clarity and Communication
Observer design pattern in detail:
The Observer Design Pattern is a behavioural pattern that

defines a one-to-many dependency between objects, ensuring
that when one object (the subject) changes its state, all its
dependents (observers) are notified and updated automatically.
This pattern is widely used to establish a loosely coupled
communication mechanism between objects, promoting
flexibility and maintainability in software systems.
1) Key Components and Workflow:

• Subject: Represents the object being observed. It
maintains a list of observers and provides methods to
register, remove, and notify observers of changes.

• Observer: Defines an interface with an update method
that is called by the subject when its state changes.
Concrete observer implementations define how they
respond to updates.

• Concrete Subject: Extends the subject class and holds
the actual state. It notifies observers when its state
changes by calling their update methods.

• Concrete Observer: Implements the observer
interface and specifies how it should respond to
updates from the subject. Multiple concrete observer
classes can subscribe to a single subject.

C. State machine design pattern in detail:
The State Machine Design Pattern is a behavioral pattern that

allows an object to alter its behavior when its internal state
changes. This pattern is particularly useful when an object's
behavior is dependent on its internal state, and the transitions
between these states are well-defined. The primary goal is to
encapsulate the behavior associated with each state and allow
the object to transition seamlessly between states based on
certain conditions.
1) Key Components

• State: Represents a distinct state of the object. Each
state encapsulates a specific set of behaviors
associated with the object when it is in that state.

• Context: Maintains a reference to the current state

and provides an interface for clients to interact with
the object. The context delegates state-specific
behavior to the current state object.

• Concrete States: Implement specific behaviors
associated with a particular state. Each concrete
state provides its own implementation of the
methods defined by the state interface.

D. Implementation Steps
1. Define States
2. Create State Interface
3. Implement Concrete States
4. Create Context Class
5. Client Interaction

1) State Machine Basics in Unity
The basic idea is that a character is engaged in some

particular kind of action at any given time. The actions available
will depend on the type of gameplay but typical actions include
things like idling, walking, running, jumping, etc. These actions
are referred to as states, in the sense that the character is in a
“state” where it is walking, idling or whatever. In general, the
character will have restrictions on the next state it can go to
rather than being able to switch immediately from any state to
any other.

For example, a running jump can only be taken when the
character is already running and not when it is at a standstill, so
it should never switch straight from the idle state to the running
jump state. The options for the next state that a character can
enter from its current state are referred to as state transitions.
Taken together, the set of states, the set of transitions and the
variable to remember the current state form a state machine.

The states and transitions of a state machine can be
represented using a graph diagram, where the nodes represent
the states and the arcs (arrows between nodes) represent the
transitions. You can think of the current state as being a marker
or highlight that is placed on one of the nodes and can then only
jump to another node along one of the arrows.

The importance of state machines for animation is that they
can be designed and updated quite easily with relatively little
coding. Each state has a Motion associated with it that will play
whenever the machine is in that state. This enables an animator
or designer to define the possible sequences of character actions
and animations without being concerned about how the code
will work.

3. Problem Identification

A. Game Design Challenges
Designing and implementing AAA games for PC and

consoles involves overcoming a myriad of technical, coding,
and architectural challenges. These challenges span various
aspects of game development, from graphics and physics to
networking and optimization. Here's a detailed breakdown of
these challenges:

 INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING, VOL.5, NO.7., JULY 2024.

PAVAN P Y., ET.AL.: DESIGNING CUSTOM STATE MACHINE INSTEAD OF ANIMATION STATE MACHINE IN UNITY FOR DEVELOPING
3RD PERSON ACTION GAME 98

1) Graphics and Rendering:
• Realistic Graphics: Achieving realistic graphics

demands advanced rendering techniques, such as
physically-based rendering (PBR) and global
illumination, which can strain hardware capabilities.

• Optimization: Balancing visual fidelity with
performance on a variety of hardware configurations
requires extensive optimization, considering factors
like texture streaming, level-of-detail (LOD), and
efficient shader programming.

2) Physics and Simulation:
• Realistic Physics: Simulating realistic physics for

character movements, object interactions, and
environmental effects poses a challenge, demanding
complex algorithms and precise optimizations.

• Collision Detection: Implementing efficient collision
detection algorithms is crucial for handling complex
environments and interactions between game entities.

3) AI and Pathfinding:
• Intelligent NPCs: Developing advanced AI for non-

player characters (NPCs) with realistic behaviours,
decision-making, and adaptive learning presents a
significant challenge.

• Dynamic Pathfinding: Creating dynamic and efficient
pathfinding algorithms that adapt to changing
environments and handle complex terrain is crucial for
immersive gameplay.

4) Networking:
• Multiplayer Challenges: Implementing robust and

low-latency networking code for seamless multiplayer
experiences requires addressing issues like
synchronization, lag compensation, and anti-cheat
mechanisms.

• Scalability: Designing network architecture that scales
for a large number of players while maintaining a
stable connection introduces challenges related to
server load balancing and data synchronization.

5) Optimization:
• Hardware Diversity: Ensuring optimal performance

across a wide range of PC and console hardware
configurations requires thorough optimization,
including parallelization, multithreading, and
platform-specific optimizations.

• Memory Management: Effectively managing memory
resources to prevent bottlenecks and crashes,
especially in open-world games with extensive assets,
is a constant challenge.

6) Content Creation and Integration:
• Asset Pipelines: Developing efficient asset pipelines

for handling massive amounts of audio, visual, and
gameplay assets, while maintaining version control
and collaboration among large development teams, is
crucial.

• Cross-Disciplinary Collaboration: Facilitating

seamless collaboration between artists, designers, and
programmers to integrate diverse assets and ensure
consistency in the game world poses organizational
challenges.

7) Security:
• Piracy and Cheating: Implementing robust security

measures to prevent piracy and cheating in online
multiplayer games requires continuous updates and
monitoring.

8) Platform-specific Challenges:
• Console Optimization: Optimizing games for

specific console architectures and ensuring
compliance with console certification requirements
adds an extra layer of complexity.

• PC Hardware Variability: Dealing with the diverse
range of PC hardware configurations and ensuring
compatibility across different operating systems can
be challenging.

B. Challenges of applying design patterns
Designing AAA games involves numerous challenges

related to the application of design patterns. These challenges
arise due to the complex and dynamic nature of game
development, where performance, scalability, and
maintainability is critical. Here's a summary of the challenges
faced in the application of design patterns during the design of
AAA games:

• Performance Optimization with Overhead Concerns:
While design patterns provide elegant solutions to
common problems, they can introduce overhead.
Striking a balance between clean design and optimal
performance is crucial, especially in resource-
intensive AAA games.

• Scalability with Adaptability to Game Size: Design
patterns should scale seamlessly as the game project
grows in size and complexity. Ensuring that patterns
remain effective and maintainable across large
codebases and expansive game worlds is a constant
challenge.

• Real-time Constraints with Game Loop Integration:
Integrating design patterns into the real-time game
loop requires careful consideration. Patterns must be
efficient and not compromise the responsiveness of the
game, particularly in fast-paced, action-packed
scenarios.

• Concurrency and Multithreading with Parallel
Processing: Designing patterns that can effectively
harness the power of parallel processing and
multithreading is crucial for optimizing game
performance, especially in rendering, physics, and AI
computations.

• Resource Management with Memory Efficiency:
Design patterns should address memory management
challenges to prevent memory leaks and optimize
resource utilization. This is particularly critical in

 INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING, VOL.5, NO.7., JULY 2024.

PAVAN P Y., ET.AL.: DESIGNING CUSTOM STATE MACHINE INSTEAD OF ANIMATION STATE MACHINE IN UNITY FOR DEVELOPING
3RD PERSON ACTION GAME 99

AAA games with vast amounts of assets and dynamic
environments.

• Cross-disciplinary Collaboration with
Communication Between Teams: Ensuring effective
communication and collaboration between different
development teams, including artists, designers, and
programmers, is essential. Design patterns need to
facilitate collaboration and integration of diverse
elements seamlessly.

• Adaptability to Game Genres with Genre-specific
Challenges: Different game genres may have unique
requirements. Design patterns must be adaptable to
these diverse needs, whether it's handling complex AI
behaviours, intricate physics simulations, or dynamic
storytelling mechanics.

• Maintainability with Long-term Viability: Design
patterns should contribute to the maintainability of the
codebase over the game's lifecycle. Preventing code
bloat, ensuring ease of debugging, and facilitating
updates are ongoing challenges.

• User Interface (UI) Design with Dynamic UI
Requirements: Design patterns for UI must
accommodate the dynamic nature of AAA game
interfaces. Patterns need to handle various screen
resolutions, input devices, and interactive elements
while maintaining a smooth and immersive user
experience.

• Emergent Gameplay with Unpredictable Scenarios:
Design patterns may face challenges when dealing
with emergent gameplay, where unexpected
interactions between game elements create unique
scenarios. Patterns need to be flexible enough to
handle these unforeseen situations.

• Data-driven Design with Flexible Data Structures:
AAA games often rely on data-driven design for
flexibility. Design patterns should facilitate the
integration of dynamic data structures, allowing
designers to tweak game parameters without extensive
code changes.

• Cross-platform Considerations with Platform-specific
Patterns: Designing patterns that are platform-agnostic
or easily adaptable to different gaming platforms (PC,
consoles, etc.) is crucial for achieving broad market
accessibility.

C. Limitations of using Unity Animation State Machines
The implementation of animation state machines in Unity for

the development of 3rd person action games presents a myriad
of challenges that can significantly impact the overall gaming
experience. One major concern revolves around the intricate
synchronization of character animations, where transitioning
seamlessly between action states often results in disjointed and
unrealistic movements. This issue not only compromises the
visual aesthetics of the game but can also hinder player
immersion.

Furthermore, the complexity of managing multiple
animation states can lead to programming inefficiencies,
causing performance bottlenecks and impacting the game's
responsiveness. Balancing the responsiveness of character
controls with the intricacies of combat animations poses a
significant technical challenge, often resulting in delayed or
inaccurate player inputs during critical gameplay moments.

The struggle to achieve a cohesive and visually appealing
animation blend becomes particularly pronounced when
integrating diverse character movements, such as jumping,
climbing, and melee attacks. The potential for unintended
animation interruptions or glitches during dynamic sequences
creates a risk of frustrating player experiences and negatively
affecting the game's overall polish.

Additionally, the scalability of animation state machines in
larger game projects can become a stumbling block, making it
difficult for developers to maintain and expand the system as
the game evolves. This lack of scalability can impede the
addition of new features, characters, or animations, limiting the
game's potential for growth and innovation.

Collaboration between animators and programmers becomes
challenging due to the inherent complexity of animation state
machines, often resulting in miscommunications and delays in
implementing desired changes or improvements. This discord
can hinder the creative workflow and compromise the timely
delivery of a polished gaming experience.

In summary, the use of animation state machines in Unity for
3rd person action games introduces a range of challenges,
encompassing synchronization issues, performance
bottlenecks, responsiveness concerns, visual glitches,
scalability limitations, and collaboration difficulties.
Addressing these challenges is imperative to ensure the
development of immersive, fluid, and engaging gaming
experiences that meet the expectations of modern gamers.

4. Methodology

A. Software
Developing games in Unity with C# requires a specific set of

system and software requirements.
1) Software Requirements:

• Unity Hub: Unity Hub is a management tool for
Unity projects. It allows you to install and manage
different versions of Unity.

• Unity Editor: Unity Editor is the core development
environment where you design, build, and test your
games.

• Visual Studio or Visual Studio Code: Unity uses
Visual Studio as the default integrated development
environment (IDE). Visual Studio Code is also a
popular choice with additional plugins for Unity.

2) Plugins and Frameworks:
• TextMeshPro: Unity's TextMeshPro is a powerful

text rendering tool that provides enhanced text and
font capabilities. It is widely used for creating

 INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING, VOL.5, NO.7., JULY 2024.

PAVAN P Y., ET.AL.: DESIGNING CUSTOM STATE MACHINE INSTEAD OF ANIMATION STATE MACHINE IN UNITY FOR DEVELOPING
3RD PERSON ACTION GAME 100

dynamic and stylized text in games.
• Cinemachine: Cinemachine is a camera system for

Unity that provides dynamic and procedural camera
movements. It's useful for creating cinematic and
visually appealing gameplay experiences.

• Post-Processing Stack: The Post-Processing Stack
in Unity enhances visual effects in games. It
includes features like ambient occlusion, bloom,
and color grading to improve the overall look of
your game.

3) Additional Recommendations:
• UI/UX Design Tools: Depending on your game's

requirements, you might use design tools like
Adobe XD, Sketch, or Figma for UI/UX design.

• 3D Modelling Software (Optional): For creating 3D
models, you may use software like Blender,
Autodesk Maya, or Cinema 4D.

B. Implementation
Unity, one of the most popular game development engines,

relies heavily on C# as its primary scripting language. Coding
in C# within the Unity environment offers a powerful and
flexible approach to game development.
1) Player

i. Creating the State Machine for Player:
Define the States: Create an enumeration to represent all

possible states of the player.
State Machine Base Class: Create a base class for the state

machine that will handle the current state and transitions.
Player Controller: Implement the player controller to manage

states and handle state transitions.
ii. Implementing Specific States
Each state will inherit from the base State class and override

necessary methods.
Idle State
Attack State
Block State
iii. Implementing Complex States
Dodge State
Impact State
Dead State
iv. Handling Movement States
Fall Hang State
Jump State
Pull Up State

2) Enemy
i. Creating the State Machine for Enemy:
Base State
Idle State
Chase State
Attack State
Impact State
Dead State
ii. Implementing Enemy AI:

Enemy Controller
Pathfinding
Behavior Tree

3) Unity Specifics
i. Cinemachine
Cinemachine is a powerful and flexible camera system for

Unity 3D that simplifies the process of creating dynamic, high-
quality camera behaviors for games and interactive
applications. Key Features of Cinemachine:

• Smart Camera Controls: Cinemachine offers smart

camera controls that automatically adjust to provide
the best view of the scene or action. It handles
camera transitions, composition, and follows targets
smoothly.

• Virtual Cameras: Instead of manipulating a single
camera, Cinemachine uses virtual cameras that
define different camera behaviors and settings.
Developers can switch between these virtual
cameras seamlessly to create diverse cinematic
effects.

• Advanced Camera Shake: Cinemachine provides
robust camera shake effects, enhancing the realism
and impact of actions like explosions, impacts, and
rapid movements.

• Blend and Cut: Cinemachine can blend smoothly
between different camera states or cut instantly,
giving developers control over the pacing and style
of camera transitions.

• Extensions and Customization: Cinemachine
includes numerous extensions for custom
behaviors, such as collision detection, damping, and
look-ahead, allowing for extensive customization
and fine-tuning.

• Integration with Timeline: Cinemachine integrates
seamlessly with Unity’s Timeline tool, enabling
developers to choreograph complex camera
sequences alongside animations and events.

ii. Action Map
Creating an action map in Unity 3D involves setting up input

controls for your game using the Input System package. The
Input System offers a more flexible and robust way to handle
player inputs than the legacy input manager.

Step 1: Installing the Input System Package
First, you need to install the Input System package. Open the

Package Manager (Window > Package Manager), search for
"Input System," and install it. After installation, Unity will
prompt you to restart the editor to enable the new input system.

Step 2: Setting Up the Input Actions
1. Create Input Actions Asset:
• Go to the Project window, right-click, and select Create >

Input Actions. Name this asset "PlayerInputActions".

 INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING, VOL.5, NO.7., JULY 2024.

PAVAN P Y., ET.AL.: DESIGNING CUSTOM STATE MACHINE INSTEAD OF ANIMATION STATE MACHINE IN UNITY FOR DEVELOPING
3RD PERSON ACTION GAME 101

2. Open the Input Actions Editor:
• Double-click on the "PlayerInputActions" asset to open

the Input Actions editor.
3. Creating an Action Map:
• Click the + button to add a new action map. Name it

"Player".
4. Adding Actions:
• Within the "Player" action map, add actions for different

player inputs. For example, add actions named "Move",
"Jump", "Attack", and "Dodge".

5. Defining Bindings:
• For each action, define the control bindings. For "Move",

add a 2D Vector Composite and bind it to the "WASD" keys on
the keyboard and the left stick on the gamepad.

• For "Jump", bind it to the spacebar on the keyboard and
the "A" button on the gamepad.

• For "Attack", bind it to the left mouse button on the
keyboard and the "X" button on the gamepad.

• For "Dodge", bind it to the left shift key on the keyboard
and the "B" button on the gamepad.

Step 3: Generating the C# Class
1. Generate C# Class:
• Click the Generate C# Class button in the Input Actions

editor. Name the class "PlayerInputActions" and click Apply.
Step 4: Integrating with Player Script
1. Create a Player Script:
• Create a new C# script named "PlayerController" and

attach it to the player GameObject.
2. Referencing the Input Actions:
• In the "PlayerController" script, create a reference to the

"PlayerInputActions" class and implement methods to handle
the actions.

iii. Character Movement Physics
Start by creating a new GameObject in your Unity scene to

represent the character. This object will serve as the root of your
character's hierarchy.

To enable physics-based movement, add the following
components to the "Player" GameObject:

1. Rigidbody:
• Select the "Player" GameObject, click Add Component,

and choose Rigidbody. This component makes the GameObject
subject to physics simulations.

2. Collider:
• Add a Capsule Collider to match the shape of the

character. This collider will handle collisions with the
environment.

3. Script:
• Create a new C# script named "PlayerController" and

attach it to the "Player" GameObject. This script will manage
the character's movement logic.

To make the character face the direction of movement, you
can update the character's rotation in the Move method.

Raycasting for Ground Detection to detect the ground
provides more accurate ground checks and helps handle slopes
and uneven terrain.

Handling Slopes adjusting the movement direction based on
the surface normal.

Physics Settings
Adjust Unity's physics settings for optimal performance.
1. Fixed Timestep:
• Set an appropriate fixed timestep in Edit > Project Settings

> Time.
2. Collision Detection:
• Choose between discrete and continuous collision

detection based on your needs.
Efficient Raycasting: Minimize performance impact by

optimizing raycasts. Only perform necessary checks and avoid
redundant raycasts.

Object Pooling: For effects like particle systems or

instantiated objects, use object pooling to reduce garbage
collection and improve performance.

5. Results
System Used to perform simulation:

• Operating System: Windows 11 23H2
• 13th Gen Intel® Core™ i9-13980HX 2.2 GHz (24

cores: 8 P-cores and 16 E-cores)
• Graphics Card: NVIDIA® GeForce RTX™ 4070

Laptop GPU
• Memory (RAM): 16 GB RAM
• Storage: 1TB SSD

The performance of AAA (Triple-A) games is measured

through various metrics and benchmarks to ensure smooth and
enjoyable gameplay experiences. Some criteria that were
considered:

• Frame Rate (FPS): Frame rate measures the number
of frames rendered per second. Higher frame rates,
typically 30 FPS or above, contribute to smoother
animations and more responsive controls. Many
AAA games aim for 60 FPS or even higher for a
more immersive experience.

• Resolution: The resolution of the game refers to the
number of pixels displayed on the screen. Higher
resolutions, such as 1080p (Full HD), 1440p (Quad
HD), or 4K, result in sharper and more detailed
visuals. The choice of resolution can impact
performance, and optimizing games for various
resolutions is crucial for a broad player base.

• Graphics Settings: AAA games often provide a
range of graphics settings that users can adjust
based on their hardware capabilities. These settings
include options for texture quality, shadow quality,
anti-aliasing, and other visual effects.

• Load Times: Load times are critical for a seamless
gaming experience. Faster load times contribute to
a smoother flow between levels or scenes. The
performance is evaluated based on how quickly the

 INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING, VOL.5, NO.7., JULY 2024.

PAVAN P Y., ET.AL.: DESIGNING CUSTOM STATE MACHINE INSTEAD OF ANIMATION STATE MACHINE IN UNITY FOR DEVELOPING
3RD PERSON ACTION GAME 102

game loads assets, textures, and levels.
• Stability and Consistency: Stability refers to the

reliability of the game's performance over time.
Consistency in frame rate and responsiveness is
crucial to avoid issues like stuttering, freezing, or
sudden drops in performance during gameplay.

• CPU and GPU Utilization: Monitoring the
utilization of the central processing unit (CPU) and
graphics processing unit (GPU) provides insights
into how efficiently the game utilizes hardware
resources. Balanced utilization ensures optimal
performance without bottlenecks.

Table.1.

Tabulated Results Comparison
Criteria Animation

State Machine
Custom

State
Machine

Custom
State
Machine
Scaled with
load

Frame Rate
(FPS)

180 to 300
FPS

240 to
360 FPS

240 to
360 FPS

CPU
Milliseconds

(ms)

Between
4ms to 6ms

Below
4.5ms

Below
4.5ms

Resolution 4K 4K 4K
Stability Rare screen

freezes
No

crashes/No
screen

freezing

No
crashes/No

screen
freezing

GPU Usage
in %

Up to 85% Up to
85%

Up to
85%

CPU Usage
in %

Up to 16% Up to
20%

Up to
20%

Memory Up to 8GB Up to
8GB

Up to
8GB

6. Conclusion & Future Scope

A. Conclusion:
Using custom state machines in Unity for game development

provides several benefits, offering greater control, flexibility,
and efficiency in managing the logic and behavior of game
entities. Below are the details:

• Flexibility and Control: Tailored to Game
Requirements: Custom state machines allow
developers to design and implement states that
precisely fit the specific requirements of the game.
This flexibility is particularly valuable in scenarios
where Unity's built-in Animator Controller might not
provide the required level of customization.

• Seamless Integration with Game Logic: Direct Script
Integration: Custom state machines are often
implemented directly in scripts using C#. This tight
integration allows for seamless coordination between
game logic, user input, and state transitions.

• Responsive and Realistic Gameplay: Fine-tuned
Transitions: With a custom state machine, developers
can fine-tune state transitions to create responsive and
realistic gameplay. This is crucial for character
movements, combat animations, and other dynamic
behaviors, providing a more immersive experience
for players.

• Optimized Performance: Reduced Overhead: Custom
state machines can be optimized for performance,
reducing unnecessary overhead associated with
generic solutions. This optimization is especially
important in resource-intensive games where
performance is a critical factor.

• Dynamic State Changes: Adaptable to Changing
Conditions: Custom state machines are adaptable to
changing game conditions. They can dynamically
adjust states based on variables such as health,
environmental factors, or player progression,
allowing for a more dynamic and engaging gaming
experience.

• Support for Non-Animation States: Beyond
Animation Control: While Unity's Animator
Controller is primarily focused on animation, custom
state machines can handle a broader range of states.
This includes non-animation states related to
gameplay mechanics, AI behavior, or any other
aspect of the game that requires state-based control.

B. Future Scope:
Implementing a custom state machine in Unity 3D for

developing a third-person combat game opens up numerous
future possibilities. A well-designed state machine enhances
modularity, maintainability, and scalability of the game's
codebase, facilitating easier updates and feature additions.
Future enhancements could include more sophisticated AI
behaviors, allowing enemies and NPCs to exhibit more realistic
and varied responses in combat scenarios.

Additionally, integrating more advanced animation blending
techniques and transitions can lead to smoother and more
natural character movements. As the game evolves, the state
machine can accommodate new combat mechanics, such as
advanced combos, special attacks, and defensive maneuverers,
without significant refactoring.

Expanding multiplayer capabilities becomes more feasible
with a robust state machine, as managing multiple player states
and synchronizing them over a network can be handled more
systematically. Moreover, the state machine can be extended to
support various game modes, each with unique rules and player
interactions, enhancing replay ability and user engagement.

Finally, the modular nature of a custom state machine allows
for easier porting to different platforms, ensuring the game can
reach a wider audience across PCs, consoles, and mobile
devices. This foundational work sets the stage for continuous
improvement and expansion, ensuring the game's longevity and
success.

 INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING, VOL.5, NO.7., JULY 2024.

PAVAN P Y., ET.AL.: DESIGNING CUSTOM STATE MACHINE INSTEAD OF ANIMATION STATE MACHINE IN UNITY FOR DEVELOPING
3RD PERSON ACTION GAME 103

References
[1]. Wahyu Safitra, Ahmad Faisol, Suryo Adi Wibowo,

“Application of the Finite State Machine Method to Non-
Player Character (NPC) Action Strategy Game 'Ouroboros'”,
Jurnal Mahasiswa Teknik Informatika, 04 September 2023,

[2]. Muhammad Khafidh Aulia, Ali Mahmudi, Sentot Achmadi,
“Application of the finite state machine method in android-
based pandemic nightmare game”, Jurnal Mahasiswa Teknik
Informatika, 07 September 2023.

[3]. Devang Jagdale, “Finite State Machine in Game
Development”, International Journal of Advanced Research
in Science, Communication and Technology, 08 September
2023.

[4]. Enggar Adji Laksono, “Mathematics Education Game Using
the Finite State Machine Method to Implement Virtual
Reality in Game Platformer”, Inform: Jurnal Ilmiah Bidang
Teknologi Informasi dan Komunikasi, 09 September 2023.

[5]. Robert Collier, “A Computer Game to Teach Finite-State
Machine Artificial Intelligence to First-Year
Undergraduates”, IEEE Xplore, 17 September 2023.

[6]. Jiacun Wang, William Tepfenhart, “Formal Methods in
Computer Science – Finite State Machine”, Taylor &
Francis Group, 28 September 2023.

[7]. Jeff W. Murray, “C# Game Programming Cookbook for
Unity 3D”, Taylor & Francis Group, 28 September 2023.

[8]. Alex Okita, “Learning C# Programming with Unity 3D,
second edition”, Taylor & Francis Group, 28 September
2023.

[9]. Juan Wu, “Research on roaming and interaction in VR game
based on Unity 3D”, IEEE Xplore, 17 September 2023.

	1. Introduction
	A. Key Features:
	B. Key Features:
	C. Other Game Development Engines:

	2. Literature Review
	A. Understanding Design Patterns
	1) Types of Design Patterns

	B. Benefits of Design Patterns
	1) Key Components and Workflow:

	C. State machine design pattern in detail:
	1) Key Components

	D. Implementation Steps
	1) State Machine Basics in Unity

	3. Problem Identification
	A. Game Design Challenges
	1) Graphics and Rendering:
	2) Physics and Simulation:
	3) AI and Pathfinding:
	4) Networking:
	5) Optimization:
	6) Content Creation and Integration:
	7) Security:
	8) Platform-specific Challenges:

	B. Challenges of applying design patterns
	C. Limitations of using Unity Animation State Machines

	4. Methodology
	A. Software
	1) Software Requirements:
	2) Plugins and Frameworks:
	3) Additional Recommendations:

	B. Implementation
	1) Player
	2) Enemy
	3) Unity Specifics

	5. Results
	6. Conclusion & Future Scope
	A. Conclusion:
	B. Future Scope:

	References

