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Abstract: In this study, we address the generalized distributed-

order time-fractional Black-Scholes equation through an implicit 
method. We approximate the time and spatial derivatives using 
finite difference techniques. Furthermore, we employ a quasi-
linearization technique to remove the nonlinear term, thereby 
simplifying the computational process. The numerical results from 
our method demonstrate both its accuracy and convergence rate, 
establishing it as a robust approach for solving financial models. 
This research highlights the potential of finite differences and 
quasi-linearization in tackling mathematical equations in financial 
engineering. 
 

Keywords: Generalized distributed-order; Fractional 
derivatives; Black-Scholes model. 

1. Introduction 
In the realm of finance, an option is a crucial and widely 

utilized financial derivative that provides the holder with the 
right, but not the obligation, to buy (call option) or sell (put 
option) an asset at a predetermined price K (referred to as the 
strike price) within a specified timeframe. The practice of 
options trading dates back to the late 18th century in both 
American and European markets. However, it was not until 
1973, with the establishment of the Chicago Board Options 
Exchange and the introduction of standardized options 
contracts, that this financial instrument experienced significant 
advancements. Consequently, determining the appropriate 
pricing for an option became a major challenge. In the 1970s, 
Black and Scholes [1] and Merton [2] developed a pioneering 
option-pricing model that describes the dynamic behavior of 
option prices over time. The Black-Scholes equation is a widely 
used mathematical model for valuing option prices and has been 
the subject of extensive research (see [3] and references 
therein). Numerous numerical studies have been conducted on 
the Black-Scholes equations, including those that incorporate 
jumps or stochastic volatility. Fractional Black-Scholes models 
have garnered increasing attention due to significant 
contributions by researchers such as Wys [4] and Cartea et al. 
[5]. These models assume that the dynamics of equity prices 
follow jump-diffusion processes or infinite activity Lvy 
processes, leading to financial derivative price dynamics that 
satisfy fractional partial differential equations (PDEs). The  

 
nonlinear Black-Scholes equation represents an important 

extension of the classical Black-Scholes model, which is 
foundational in financial mathematics for option pricing. 
Unlike the original linear model, the nonlinear version 
incorporates more realistic market conditions, such as 
transaction costs, uncertain volatility, and large investor effects, 
making it a more accurate tool for financial analysis. The 
classical Black-Scholes equation, introduced by Fischer Black 
and Myron Scholes in 1973, assumes constant volatility and no 
transaction costs, leading to a linear partial differential equation 
(PDE). However, these assumptions often do not hold in real 
markets. To address this, Corresponding author. 

Researchers have developed nonlinear modifications of the 
Black-Scholes equation. For instance, Qiu and Lorenz (2009) 
studied a nonlinear Black-Scholes equation where the volatility 
is a function of the option's value and its second derivative, 
leading to a PDE with nonlinear dependence on the highest 
derivative [6]. This model accounts for uncertain volatility, 
providing a more robust framework for option pricing under 
varying market conditions. Another significant contribution is 
by Ankudinova and Ehrhardt (2007), who explored several 
nonlinear Black-Scholes models incorporating factors such as 
transaction costs and risks from unprotected portfolios [7]. 
Their work includes numerical solutions for European and 
American options, transforming the problem into a convection-
diffusion equation with a nonlinear term for European options 
and a fully nonlinear nonlocal parabolic equation for American 
options. These advancements highlight the importance of 
nonlinear Black-Scholes equations in capturing the 
complexities of financial markets, offering more precise and 
adaptable tools for option pricing and risk management. A type 
of linear Black-Scholes equation with a fractional distributed 
derivative term was proposed and solved numerically by Zhang 
et al. in 2022 [8]. In this paper, we explore a novel nonlinear 
generalized distributed-order time-fractional Black-Scholes 
model as follows 

with the initial condition 
𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
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𝜕𝜕(𝑥𝑥, 0) = 𝑣𝑣0(𝑥𝑥), 𝜁𝜁1 ≤ 𝑥𝑥 ≤ 𝜁𝜁2, (2) 
and homogeneous Dirichlet boundary conditions 
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𝜕𝜕(𝜁𝜁1, 𝑡𝑡) = 𝜕𝜕(𝜁𝜁2, 𝑡𝑡) = 0, 0 < 𝑡𝑡 ≤ 𝑇𝑇. (3) 
Here 𝑟𝑟 ≥ 0 is the risk-free rate, 𝜎𝜎 ≥ 0 is the volatility, 𝜙𝜙 ∈

𝐶𝐶[𝜁𝜁1, 𝜁𝜁2] × 𝐶𝐶[0,𝑇𝑇] and 𝑣𝑣0 ∈ 𝐶𝐶2[𝜁𝜁1, 𝜁𝜁2] are considered as known 
functions. Here,  ∞𝜕𝜕∗/𝜕𝜕𝑡𝑡 denotes the generalized distributed-
order differential operator which is defined as follows 

 𝜛𝜛𝜕𝜕∗𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑡𝑡

= �  
𝛼𝛼𝑟𝑟

𝛼𝛼𝑙𝑙
 𝜛𝜛(𝛼𝛼, 𝑥𝑥, 𝑡𝑡)𝜕𝜕𝑡𝑡𝛼𝛼𝜕𝜕(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝛼𝛼, (4) 

where 𝜛𝜛(𝛼𝛼, 𝑥𝑥, 𝑡𝑡) is known density function and 
𝜕𝜕𝑡𝑡𝛼𝛼𝜕𝜕(𝑥𝑥, 𝑡𝑡) = 1

Γ(1−𝛼𝛼)∫  𝑡𝑡0
1

(𝑡𝑡−𝑠𝑠)𝛼𝛼
𝜕𝜕𝜕𝜕(𝑥𝑥,𝑠𝑠)
𝜕𝜕𝑠𝑠

𝑑𝑑𝑑𝑑  
It is a fractional derivative of Caputo sense. 
The fractional distribution derivative offers significant 

advantages in various fields due to its enhanced modeling 
capabilities, flexibility, and ability to accurately represent 
memory and hereditary properties. It provides a better fit for 
anomalous diffusion processes, which is particularly beneficial 
in finance for pricing derivatives and risk assessment. 
Additionally, its application in machine learning has improved 
prediction accuracy by capturing long-range dependencies and 
complex patterns in data. These benefits make the fractional 
distribution derivative a powerful tool in both theoretical 
research and practical applications [9]. These advantages make 
the fractional distribution derivative a powerful tool in both 
theoretical research and practical applications. The generalized 
fractional distributed-order Black-Scholes model has garnered 
significant interest recently due to its ability to generalize 
previous models [10], [11], [12], [13], [14], [15]. Despite its 
potential, numerical solutions for this model have been scarce. 

The structure of the paper is as follows: In the second section, 
we introduce a discrete scheme for solving equation (1) using 
the finite difference method. The section 3 is dedicated to the 
error analysis of the proposed method, ensuring its reliability 
and accuracy. We present two numerical examples, with results 
illustrated through figures and tables to demonstrate the 
method's effectiveness in section 4. Finally, the paper concludes 
with a summary of findings and potential future research 
directions in Section 5. 

2. Numerical Method 

Let 𝑥𝑥𝑙𝑙 = 𝜁𝜁1 + 𝑙𝑙Δ𝑥𝑥, 𝑙𝑙 = 0,1, … , 𝐿𝐿,Δ𝑥𝑥 = 𝜁𝜁2−𝜁𝜁1
𝐿𝐿

, 𝑡𝑡𝑛𝑛 = 𝑛𝑛Δ𝑡𝑡,𝑛𝑛 =

0,1, … ,𝑁𝑁,Δ𝑡𝑡 = 𝑇𝑇
𝑁𝑁

, 𝑡𝑡𝑛𝑛+𝜃𝜃 = (𝑛𝑛 + 𝜃𝜃)Δ𝑡𝑡 = 𝑡𝑡𝑛𝑛 + 𝜃𝜃Δ𝑡𝑡 𝑡𝑡𝑛𝑛 + 𝜃𝜃Δ𝑡𝑡 
and 𝛼𝛼𝑘𝑘 = 𝛼𝛼𝑙𝑙 + 𝑘𝑘Δ𝛼𝛼, 𝑘𝑘 = 0,1, … ,𝐾𝐾,Δ𝛼𝛼 = 𝛼𝛼𝑟𝑟−𝛼𝛼𝑙𝑙

𝐾𝐾
. Also, assume 

that 𝜛𝜛𝑘𝑘
𝑛𝑛 = 𝜛𝜛(𝛼𝛼𝑘𝑘, 𝑥𝑥, 𝑡𝑡𝑛𝑛) and 𝜕𝜕𝑛𝑛 = 𝜕𝜕(𝑥𝑥, 𝑡𝑡𝑛𝑛). Using the 

trapezoidal integration method, we have 

𝜛𝜛𝑡𝑡
∗𝜕𝜕𝑛𝑛 =

Δ𝛼𝛼
2
�𝜛𝜛0

𝑛𝑛𝜕𝜕𝑡𝑡
𝛼𝛼0𝜕𝜕𝑛𝑛 + 2 �  

𝐾𝐾−1

𝑘𝑘=1

 𝜛𝜛𝑘𝑘
𝑛𝑛𝜕𝜕𝑡𝑡

𝛼𝛼𝑘𝑘𝜕𝜕𝑛𝑛 + 𝜛𝜛𝐾𝐾
𝑛𝑛𝜕𝜕𝑡𝑡

𝛼𝛼𝐾𝐾𝜕𝜕𝑛𝑛� + 𝑂𝑂((Δ𝛼𝛼)2) (5) 

For an approximation of the fractional derivatives, we use the 
following L1 method 

𝜕𝜕𝑡𝑡𝛼𝛼𝜕𝜕𝑛𝑛 = 1
Γ(1−𝛼𝛼)∫  𝑡𝑡𝑛𝑛

0  (𝑡𝑡𝑛𝑛 − 𝑑𝑑)−𝛼𝛼 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑠𝑠)
𝜕𝜕𝑠𝑠

𝑑𝑑𝑑𝑑

 = 1
Γ(1−𝛼𝛼)

∑  𝑛𝑛−1
𝑖𝑖=0  ∫  𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖
 (𝑡𝑡𝑛𝑛 − 𝑑𝑑)−𝛼𝛼 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑠𝑠)

𝜕𝜕𝑠𝑠
𝑑𝑑𝑑𝑑

 = 1
Δ𝑡𝑡Γ(1−𝛼𝛼)

∑  𝑛𝑛−1
𝑖𝑖=0  ∫  𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖
 (𝑡𝑡𝑛𝑛 − 𝑑𝑑)−𝛼𝛼 �𝜕𝜕𝑖𝑖+1 − 𝜕𝜕𝑖𝑖 + 𝑂𝑂((Δ𝑡𝑡)2)� 𝑑𝑑𝑑𝑑

  

where 𝐽𝐽𝑖𝑖,𝑛𝑛𝛼𝛼 = ∫  𝑡𝑡𝑖𝑖+1
𝑡𝑡𝑖𝑖

(𝑡𝑡𝑛𝑛 − 𝑑𝑑)−𝛼𝛼𝑑𝑑𝑑𝑑. By substituting (6) in (5) 

we obtain 

𝜛𝜛𝜕𝜕𝑡𝑡∗𝜕𝜕𝑛𝑛 =
Δ𝛼𝛼
2Δ𝑡𝑡

�  
𝑛𝑛−1

𝑖𝑖=0

 (𝜕𝜕𝑖𝑖+1 − 𝜕𝜕𝑖𝑖)𝜉𝜉𝑖𝑖𝑛𝑛 + 𝑂𝑂((Δ𝛼𝛼)2 + (Δ𝛼𝛼)(Δ𝑡𝑡))(7) 

where  

𝜉𝜉𝑖𝑖𝑛𝑛(𝑥𝑥) = 𝜚𝜚𝑖𝑖,0𝑛𝑛 (𝑥𝑥) + 2 �  
𝐾𝐾−1

𝑘𝑘=1

𝜚𝜚𝑖𝑖,𝑘𝑘𝑛𝑛 (𝑥𝑥) + 𝜚𝜚𝑖𝑖,𝐾𝐾𝑛𝑛 (𝑥𝑥), 𝜚𝜚𝑖𝑖,𝑘𝑘𝑛𝑛 (𝑥𝑥)

=
𝜛𝜛𝑘𝑘
𝑛𝑛(𝑥𝑥)𝐽𝐽𝑖𝑖,𝑛𝑛

𝛼𝛼𝑘𝑘

Γ(1 − 𝛼𝛼𝑘𝑘) 

By putting 𝑡𝑡 = 𝑡𝑡𝑛𝑛+1/2 in (1) and using the Crank-Nicolson 
method we get 

𝜕𝜕𝑛𝑛+1 − 𝜕𝜕𝑛𝑛 + Δ𝑡𝑡
2

(𝜕𝜕𝑛𝑛+1𝜛𝜛𝜕𝜕𝑡𝑡∗𝜕𝜕𝑛𝑛+1 + 𝜕𝜕𝑛𝑛𝜛𝜛𝜕𝜕𝑡𝑡∗𝜕𝜕𝑛𝑛) − 𝑎𝑎Δ𝑡𝑡
2

(𝜕𝜕𝑥𝑥𝑥𝑥𝑛𝑛+1 + 𝜕𝜕𝑥𝑥𝑥𝑥𝑛𝑛 ) + 𝑏𝑏Δ𝑡𝑡
2

(𝜕𝜕𝑥𝑥𝑛𝑛+1 + 𝜕𝜕𝑥𝑥𝑛𝑛)  

To get rid of the nonlinear term, we use the quasi-
linearization in [16] as 
𝜛𝜛𝜕𝜕𝑡𝑡∗𝜕𝜕𝑛𝑛+1𝜕𝜕𝑛𝑛+1 = 𝜕𝜕𝑛𝑛+1𝜛𝜛𝜕𝜕𝑡𝑡∗𝜕𝜕𝑛𝑛 + 𝜕𝜕𝑛𝑛𝜛𝜛𝜕𝜕𝑡𝑡∗𝜕𝜕𝑛𝑛+1 −

𝜕𝜕𝑛𝑛𝜛𝜛𝜕𝜕𝑡𝑡∗𝜕𝜕𝑛𝑛 + 𝑂𝑂(Δ𝑡𝑡)  
In this case, we will have 
𝜕𝜕𝑛𝑛+1 − 𝜕𝜕𝑛𝑛 +

Δ𝑡𝑡
2

(𝜕𝜕𝑛𝑛𝜛𝜛𝜕𝜕𝑡𝑡∗𝜕𝜕𝑛𝑛+1 + 𝜕𝜕𝑛𝑛+1𝜛𝜛𝜕𝜕𝑡𝑡∗𝜕𝜕𝑛𝑛) −
𝑎𝑎Δ𝑡𝑡

2
(𝜕𝜕𝑥𝑥𝑥𝑥𝑛𝑛+1 + 𝜕𝜕𝑥𝑥𝑥𝑥𝑛𝑛 ) +

𝑏𝑏Δ𝑡𝑡
2

(𝜕𝜕𝑥𝑥𝑛𝑛+1 + 𝜕𝜕𝑥𝑥𝑛𝑛) 

Putting (7) in (9) gives the result 
�1 + Δ𝛼𝛼

4
�𝜉𝜉𝑛𝑛𝑛𝑛+1𝜕𝜕𝑛𝑛 + ∑  𝑛𝑛−1

𝑖𝑖=0  �𝜕𝜕𝑖𝑖+1 − 𝜕𝜕𝑖𝑖�𝜉𝜉𝑖𝑖𝑛𝑛��𝜕𝜕𝑛𝑛+1 −
𝑎𝑎Δ𝑡𝑡
2
𝜕𝜕𝑥𝑥𝑥𝑥𝑛𝑛+1 + 𝑏𝑏Δ𝑡𝑡

2
𝜕𝜕𝑥𝑥𝑛𝑛+1

 = �1 + Δ𝛼𝛼
4
�𝜉𝜉𝑛𝑛𝑛𝑛+1𝜕𝜕𝑛𝑛 − ∑  𝑛𝑛−1

𝑖𝑖=0  �𝜕𝜕𝑖𝑖+1 − 𝜕𝜕𝑖𝑖�𝜉𝜉𝑖𝑖𝑛𝑛+1��𝜕𝜕𝑛𝑛 + 𝑎𝑎Δ𝑡𝑡
2
𝜕𝜕𝑥𝑥𝑥𝑥𝑛𝑛 − 𝑏𝑏Δ𝑡𝑡

2
𝜕𝜕𝑥𝑥𝑛𝑛 − 𝑐𝑐Δ𝑡𝑡 + Δ𝑡𝑡𝜙𝜙 �𝑥𝑥, 𝑡𝑡𝑛𝑛+12

�
  

Where 𝑎𝑎 = 𝜎𝜎2

2
, 𝑏𝑏 = 𝑎𝑎 − 𝑟𝑟, 𝑐𝑐 = 𝑟𝑟.For spatial approximation, 

we use central finite difference approximations 
𝜕𝜕𝑥𝑥𝑥𝑥𝑛𝑛 =

𝜕𝜕𝑙𝑙+1𝑛𝑛 − 2𝜕𝜕𝑙𝑙𝑛𝑛 + 𝜕𝜕𝑙𝑙−1𝑛𝑛

(Δ𝑥𝑥)2
+ 𝑂𝑂((Δ𝑥𝑥)2),𝜕𝜕𝑥𝑥𝑛𝑛 =

𝜕𝜕𝑙𝑙+1𝑛𝑛 − 𝜕𝜕𝑙𝑙−1𝑛𝑛

2Δ𝑥𝑥
+ 𝑂𝑂((Δ𝑥𝑥)2) (11) 

where 𝜕𝜕𝑙𝑙𝑛𝑛 = 𝜕𝜕(𝑥𝑥𝑙𝑙 , 𝑡𝑡𝑛𝑛). By substituting (11) in (10) we have 
the following numerical scheme 
−𝑐𝑐1𝜕𝜕𝑙𝑙−1𝑛𝑛+1 + Π𝑙𝑙𝑛𝑛𝜕𝜕𝑙𝑙𝑛𝑛+1 − 𝑐𝑐2𝜕𝜕𝑙𝑙+1𝑛𝑛+1 = 𝑅𝑅𝑙𝑙𝑛𝑛 + 𝑂𝑂((Δ𝛼𝛼)2(Δ𝑡𝑡) + (Δ𝛼𝛼)(Δ𝑡𝑡)2 + (Δ𝑡𝑡)2 + (Δ𝑥𝑥)(Δ𝑡𝑡))(12) 

Where 

Π𝑙𝑙𝑛𝑛 = 1 +
Δ𝛼𝛼
4
�𝜉𝜉𝑛𝑛𝑛𝑛+1(𝑥𝑥𝑙𝑙)𝜕𝜕𝑙𝑙𝑛𝑛 + � 

𝑛𝑛−1

𝑖𝑖=0

 �𝜕𝜕𝑙𝑙𝑖𝑖+1 − 𝜕𝜕𝑙𝑙𝑖𝑖�𝜉𝜉𝑖𝑖𝑛𝑛(𝑥𝑥𝑙𝑙)� +
𝑎𝑎Δ𝑡𝑡

(Δ𝑥𝑥)2

𝑅𝑅𝑙𝑙𝑛𝑛 = 𝑐𝑐1𝜕𝜕𝑙𝑙−1𝑛𝑛 + Ξ𝑙𝑙𝑛𝑛𝜕𝜕𝑙𝑙𝑛𝑛 + 𝑐𝑐2𝜕𝜕𝑙𝑙+1𝑛𝑛 − 𝑐𝑐Δ𝑡𝑡 + Δ𝑡𝑡𝜙𝜙 �𝑥𝑥, 𝑡𝑡
𝑛𝑛+12

�

Ξ𝑙𝑙𝑛𝑛 = 1 +
Δ𝛼𝛼
4
�𝜉𝜉𝑛𝑛𝑛𝑛+1(𝑥𝑥𝑙𝑙)𝜕𝜕𝑙𝑙𝑛𝑛 −�  

𝑛𝑛−1

𝑖𝑖=0

 �𝜕𝜕𝑙𝑙𝑖𝑖+1 − 𝜕𝜕𝑙𝑙𝑖𝑖�𝜉𝜉𝑖𝑖𝑛𝑛+1(𝑥𝑥𝑙𝑙)� −
𝑎𝑎Δ𝑡𝑡

(Δ𝑥𝑥)2

𝑐𝑐1
=

Δ𝑡𝑡
2Δ𝑥𝑥

�
𝑎𝑎
Δ𝑥𝑥

+
𝑏𝑏
2
� , 𝑐𝑐2 =

Δ𝑡𝑡
2Δ𝑥𝑥

�
𝑎𝑎
Δ𝑥𝑥

−
𝑏𝑏
2
� , 𝑙𝑙 

Therefore, the numerical scheme for solution problem (1)-(3) 
can be in the following form 

−𝑐𝑐1𝑈𝑈𝑙𝑙−1𝑛𝑛+1 + 𝑃𝑃1,𝑙𝑙
𝑛𝑛 𝑈𝑈𝑙𝑙𝑛𝑛+1 − 𝑐𝑐2𝑈𝑈𝑙𝑙+1𝑛𝑛+1 = 𝑅𝑅ℎ𝑑𝑑𝑙𝑙𝑛𝑛 (13) 

Where 
𝑃𝑃1,𝑙𝑙
𝑛𝑛 = 1 + Δ𝛼𝛼

4
�𝜉𝜉𝑛𝑛𝑛𝑛+1(𝑥𝑥𝑙𝑙)𝑈𝑈𝑙𝑙𝑛𝑛 + ∑  𝑛𝑛−1

𝑖𝑖=0  �𝑈𝑈𝑙𝑙𝑖𝑖+1 − 𝑈𝑈𝑙𝑙𝑖𝑖�𝜉𝜉𝑖𝑖𝑛𝑛(𝑥𝑥𝑙𝑙)� + 𝑎𝑎Δ𝑡𝑡
(Δ𝑥𝑥)2

𝑅𝑅ℎ𝑑𝑑𝑙𝑙𝑛𝑛 = 𝑐𝑐1𝑈𝑈𝑙𝑙−1𝑛𝑛 + 𝑃𝑃2,𝑙𝑙
𝑛𝑛 𝑈𝑈𝑙𝑙𝑛𝑛 + 𝑐𝑐2𝑈𝑈𝑙𝑙+1𝑛𝑛 − 𝑐𝑐Δ𝑡𝑡 + Δ𝑡𝑡𝜙𝜙 �𝑥𝑥, 𝑡𝑡𝑛𝑛+12

�

𝑃𝑃2,𝑙𝑙
𝑛𝑛 = 1 + Δ𝛼𝛼

4
�𝜉𝜉𝑛𝑛𝑛𝑛+1(𝑥𝑥𝑙𝑙)𝑈𝑈𝑙𝑙𝑛𝑛 − ∑  𝑛𝑛−1

𝑖𝑖=0  �𝑈𝑈𝑙𝑙𝑖𝑖+1 − 𝑈𝑈𝑙𝑙𝑖𝑖�𝜉𝜉𝑖𝑖𝑛𝑛+1(𝑥𝑥𝑙𝑙)� −
𝑎𝑎Δ𝑡𝑡

(Δ𝑥𝑥)2
.

  

Based on scheme (13) we obtain the following system of 
linear equations 
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⎝

⎜⎜
⎛

𝑃𝑃1,1
𝑛𝑛 −𝑐𝑐2

−𝑐𝑐1 𝑃𝑃1,2
𝑛𝑛 −𝑐𝑐2
⋱ ⋱ ⋱

−𝑐𝑐1 𝑃𝑃1,𝐿𝐿−2
𝑛𝑛 −𝑐𝑐2
−𝑐𝑐1 𝑃𝑃1,𝐿𝐿−1

𝑛𝑛 ⎠

⎟⎟
⎞

⎝

⎜⎜
⎛

𝑈𝑈1𝑛𝑛+1

𝑈𝑈2𝑛𝑛+1
⋮

𝑈𝑈𝐿𝐿−2𝑛𝑛+1

𝑈𝑈𝐿𝐿−1𝑛𝑛+1⎠

⎟⎟
⎞

=

⎝

⎜
⎛

𝑅𝑅ℎ𝑑𝑑1𝑛𝑛
𝑅𝑅ℎ𝑑𝑑2𝑛𝑛
⋮

𝑅𝑅ℎ𝑑𝑑𝐿𝐿−2𝑛𝑛

𝑅𝑅ℎ𝑑𝑑𝐿𝐿−1𝑛𝑛 ⎠

⎟
⎞

(14) 

It is noticeable that 𝑈𝑈𝑙𝑙0, 𝑙𝑙 = 1,2, … , 𝐿𝐿 − 1 can be obtained 
from an initial condition (2) then 𝑈𝑈𝑙𝑙𝑛𝑛, 𝑙𝑙 = 1,2, … , 𝐿𝐿 − 1 for 𝑛𝑛 >
0 can be obtained using the solution of system (14).  

3. Error Analysis 
Let us assume that 𝐸𝐸𝑙𝑙𝑛𝑛 = 𝜕𝜕𝑙𝑙𝑛𝑛 − 𝑈𝑈𝑙𝑙𝑛𝑛 is the absolute error 

resulting from the difference between the actual value of 
problem (1)-(3) and the value estimated from the presented 
method in point (𝑥𝑥𝑙𝑙 , 𝑡𝑡𝑛𝑛). 

Theorem 1. Assume that Δ𝑡𝑡 < (Δ𝑥𝑥)2 then if Δ𝑡𝑡 tends to 0 and 
also Δ𝛼𝛼 tends to 0 then |𝐸𝐸𝑙𝑙𝑛𝑛| → 0. 

Proof. By subtracting equation (12) from equation (13), we 
will have 

 −𝑐𝑐1𝐸𝐸𝑙𝑙−1𝑛𝑛+1 − 𝑐𝑐2𝐸𝐸𝑙𝑙+1𝑛𝑛+1

 + �1 + Δ𝛼𝛼
4
�𝜉𝜉𝑛𝑛𝑛𝑛+1(𝑥𝑥𝑙𝑙)𝜕𝜕𝑙𝑙𝑛𝑛 + ∑  𝑛𝑛−1

𝑖𝑖=0  �𝜕𝜕𝑙𝑙𝑖𝑖+1 − 𝜕𝜕𝑙𝑙𝑖𝑖�𝜉𝜉𝑖𝑖𝑛𝑛(𝑥𝑥𝑙𝑙)� + 𝑎𝑎Δ𝑡𝑡
(Δ𝑥𝑥)2

� 𝜕𝜕𝑙𝑙𝑛𝑛+1

 −�1 + Δ𝛼𝛼
4
�𝜉𝜉𝑛𝑛𝑛𝑛+1(𝑥𝑥𝑙𝑙)𝑈𝑈𝑙𝑙𝑛𝑛 + ∑  𝑛𝑛−1

𝑖𝑖=0  �𝑈𝑈𝑙𝑙𝑖𝑖+1 − 𝑈𝑈𝑙𝑙𝑖𝑖�𝜉𝜉𝑖𝑖𝑛𝑛(𝑥𝑥𝑙𝑙)� + 𝑎𝑎Δ𝑡𝑡
(Δ𝑥𝑥)2

�𝑈𝑈𝑙𝑙𝑛𝑛+1

 = �1 + Δ𝛼𝛼
4
�𝜉𝜉𝑛𝑛𝑛𝑛+1(𝑥𝑥𝑙𝑙)𝜕𝜕𝑙𝑙𝑛𝑛 − ∑  𝑛𝑛−1

𝑖𝑖=0  �𝜕𝜕𝑙𝑙𝑖𝑖+1 − 𝜕𝜕𝑙𝑙𝑖𝑖�𝜉𝜉𝑖𝑖𝑛𝑛+1(𝑥𝑥𝑙𝑙)� −
𝑎𝑎Δ𝑡𝑡

(Δ𝑥𝑥)2
� 𝜕𝜕𝑙𝑙𝑛𝑛

 −�1 + Δ𝛼𝛼
4
�𝜉𝜉𝑛𝑛𝑛𝑛+1(𝑥𝑥𝑙𝑙)𝑈𝑈𝑙𝑙𝑛𝑛 − ∑  𝑛𝑛−1

𝑖𝑖=0  �𝑈𝑈𝑙𝑙𝑖𝑖+1 − 𝑈𝑈𝑙𝑙𝑖𝑖�𝜉𝜉𝑖𝑖𝑛𝑛+1(𝑥𝑥𝑙𝑙)� −
𝑎𝑎Δ𝑡𝑡

(Δ𝑥𝑥)2
�𝑈𝑈𝑙𝑙𝑛𝑛

  

By putting 𝑛𝑛 = 0 in (15) we obtain 
 −𝑐𝑐1𝐸𝐸𝑙𝑙−11 − 𝑐𝑐2𝐸𝐸𝑙𝑙+11 + �1 + Δ𝛼𝛼

4
𝜉𝜉01(𝑥𝑥𝑙𝑙)𝜕𝜕𝑙𝑙0 + 𝑎𝑎Δ𝑡𝑡

(Δ𝑥𝑥)2
� 𝜕𝜕𝑙𝑙1 − �1 + Δ𝛼𝛼

4
𝜉𝜉01(𝑥𝑥𝑙𝑙)𝑈𝑈𝑙𝑙0 + 𝑎𝑎Δ𝑡𝑡

(Δ𝑥𝑥)2
� 𝑈𝑈𝑙𝑙1

 = �1 + Δ𝛼𝛼
4
𝜉𝜉01(𝑥𝑥𝑙𝑙)𝜕𝜕𝑙𝑙0 −

𝑎𝑎Δ𝑡𝑡
(Δ𝑥𝑥)2

� 𝜕𝜕𝑙𝑙0 − �1 + Δ𝛼𝛼
4
𝜉𝜉01(𝑥𝑥𝑙𝑙)𝑈𝑈𝑙𝑙0 −

𝑎𝑎Δ𝑡𝑡
(Δ𝑥𝑥)2

�𝑈𝑈𝑙𝑙0
  

Since 𝜕𝜕𝑙𝑙0 = 𝑈𝑈𝑙𝑙0 and Δ𝑡𝑡 → 0 then 𝑐𝑐1 → 0 and 𝑐𝑐2 → 0 and so 
from (16) we get 

lim
Δ𝑡𝑡→0

 �1 +
Δ𝛼𝛼
4

|𝜉𝜉01(𝑥𝑥𝑙𝑙)𝜕𝜕𝑙𝑙0|� |𝐸𝐸𝑙𝑙1| = 0 (17) 

Whereas Δ𝛼𝛼 → 0 therefore 
|𝐸𝐸𝑙𝑙1| → 0 (18) 

According to equation (15) and assumptions, we have 
|𝐸𝐸𝑙𝑙𝑛𝑛+1| ≤ |𝐸𝐸𝑙𝑙𝑛𝑛| (19) 

Equation (19) along with (18) gives what we wanted.  

4. Numerical Results 
In this section, we study the numerical results of the 

implementation of the presented method in two examples. The 
versatility and the accuracy of the methods are measured using 
the maximum absolute error norms 𝜀𝜀∞𝐿𝐿 = max

0≤𝑙𝑙≤𝐿𝐿
 |𝜕𝜕(𝑥𝑥𝑙𝑙 , 𝑡𝑡𝑁𝑁) −

𝑈𝑈(𝑥𝑥𝑙𝑙 , 𝑡𝑡𝑁𝑁)|, 𝜀𝜀∞𝑁𝑁 = max
0≤𝑛𝑛≤𝑁𝑁

 �𝜕𝜕�𝑥𝑥[𝐿𝐿/2], 𝑡𝑡𝑛𝑛� − 𝑈𝑈�𝑥𝑥[𝐿𝐿/2], 𝑡𝑡𝑛𝑛�� , and the 
convergence rates are defined as follows 

𝜌𝜌x =
log �𝜀𝜀∞

𝐿𝐿

𝜀𝜀∞2𝐿𝐿
�

log (2)
,𝜌𝜌t =

log � 𝜀𝜀∞
𝑁𝑁

𝜀𝜀∞2𝑁𝑁
�

log (2)
. 

Example 1. Let 𝑇𝑇 = 1, 𝜁𝜁1 = 0, 𝜁𝜁2 = 1,𝛼𝛼𝑙𝑙 = 0.2,𝛼𝛼𝑟𝑟 =
0.8, 𝑟𝑟 = 0.02,𝜎𝜎 = 0.1, 𝑣𝑣0(𝑥𝑥) = sin (𝜋𝜋𝑥𝑥) and 𝜛𝜛(𝑥𝑥, 𝑡𝑡,𝛼𝛼) =
0.01Γ(1 − 𝛼𝛼)�(𝑥𝑥 + 1)(𝑡𝑡 + 1). The exact solution is assumed 
to be 𝜕𝜕(𝑥𝑥, 𝑡𝑡) = (𝑡𝑡 + 1)sin (𝜋𝜋𝑥𝑥) and 𝜙𝜙(𝑥𝑥, 𝑡𝑡) can be obtained 
from exact solution as follows 

𝜙𝜙(𝑥𝑥, 𝑡𝑡) =𝑐𝑐 + sin (𝜋𝜋𝑥𝑥) + 𝑏𝑏𝜋𝜋cos (𝜋𝜋𝑥𝑥)(𝑡𝑡 + 1)

 −�sin2 (𝜋𝜋𝑥𝑥)�(𝑡𝑡 + 1)(𝑥𝑥 + 1)(𝑡𝑡 + 1) �logint�𝑡𝑡1/5� − logint�𝑡𝑡4/5��� /100 + 𝑎𝑎𝜋𝜋2sin (𝜋𝜋𝑥𝑥)(𝑡𝑡 + 1) 

in MATLAB syntax. The norm of errors and the order of 
convergences for different values of 𝐿𝐿,𝑁𝑁, and 𝐾𝐾 are reported in 
Table 1. Also, the numerical solution and its related absolute 
errors are shown in Figure 1. 

Example 2. Let 𝑇𝑇 = 1,𝛽𝛽1 = 0,𝛽𝛽2 = 1,𝛽𝛽∗ = 0.2,𝛽𝛽∗ =
0.6, 𝑟𝑟 = 0.02,𝜎𝜎 = 0.1, 𝑣𝑣0(𝑥𝑥) = sin (𝜋𝜋𝑥𝑥) , 𝛾𝛾(𝑥𝑥, 𝑡𝑡,𝛽𝛽) =
0.01Γ(1 − 𝛽𝛽)�(𝑥𝑥 + 1)(𝑡𝑡 + 1). The exact solution is assumed 
to be 𝑣𝑣(𝑥𝑥, 𝑡𝑡) = (1 + 𝑡𝑡)sin (𝜋𝜋𝑥𝑥) and 𝑓𝑓(𝑥𝑥, 𝑡𝑡) can be obtained 
from exact solution as follows 

 

 
Fig. 1.  Numerical solution (left) and the absolute errors for all mesh points 

in example 1 with 𝑁𝑁 = 50, 𝐿𝐿 = 50 and 𝐾𝐾 = 20 
 

𝑓𝑓(𝑥𝑥, 𝑡𝑡) =𝑐𝑐 + sin (𝜋𝜋𝑥𝑥) − 0.01 �sin (𝜋𝜋𝑥𝑥)((𝑡𝑡 + 1)(𝑥𝑥 + 1))1/2 �logint�𝑡𝑡2/5� − logint�𝑡𝑡4/5���

 +𝑏𝑏𝜋𝜋cos (𝜋𝜋𝑥𝑥)(𝑡𝑡 + 1) + 𝑎𝑎𝜋𝜋2sin (𝜋𝜋𝑥𝑥)(𝑡𝑡 + 1)
 

In MATLAB syntax. The numerical and exact solutions for 
𝑁𝑁 = 40, 𝐿𝐿 = 40, and 𝐾𝐾 = 30 are shown in Figure 2. In 
addition, the absolute errors in all mesh points are shown in 
Figure 3 for 𝑁𝑁 = 40, 𝐿𝐿 = 40, and 𝐾𝐾 = 30. 
 

 

Table 1 
The maximum-norm errors and convergence rates for different values of L,N, and K in example 1 

𝑳𝑳 𝑵𝑵,𝑲𝑲 𝜺𝜺∞𝑳𝑳  𝝆𝝆𝐱𝐱 ‖ 𝑵𝑵 𝑳𝑳,𝑲𝑲 𝜺𝜺∞𝑵𝑵  
4  6.900628𝑒𝑒 − 03 - 2  3.035511𝑒𝑒 − 03 - 
8  1.808096𝑒𝑒 − 03 1.932 4  9.166809𝑒𝑒 − 04 1.727 
16 𝑁𝑁 = 20 4.673662𝑒𝑒 − 04 1.952 8 𝐿𝐿 = 50 2.950106𝑒𝑒 − 04 1.635 
32 𝐾𝐾 = 20 1.149771𝑒𝑒 − 04 2.023 16 𝐾𝐾 = 20 1.068583𝑒𝑒 − 04 1.465 
64  2.755720𝑒𝑒 − 05 2.060 32  4.083690𝑒𝑒 − 05 1.388 
128  9.867297𝑒𝑒 − 06 1.482 64  6.297917𝑒𝑒 − 05 0.625 
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Fig. 2.  Numerical solution (left) and the exact solution (right) for all mesh 
points in example 2 with 𝑁𝑁 = 40, 𝐿𝐿 = 40, and 𝐾𝐾 = 30 

5. Conclusion 
In conclusion, this study effectively addresses the 

generalized distributed-order time-fractional Black-Scholes 
equation using an implicit method. By approximating the time 
and spatial derivatives with finite difference techniques and 
employing quasi-linearization to eliminate the nonlinear term, 
we have simplified the computational process. The numerical 
results confirm the accuracy and convergence rate of our 
method, establishing it as a robust approach for solving 
financial models. This research underscores the potential of 
finite differences and quasi-linearization in addressing complex 
mathematical equations in financial engineering. 
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Fig. 3.  The absolute errors for all mesh points in example 2 with 𝑁𝑁 =

40, 𝐿𝐿 = 40 and 𝐾𝐾 = 30 
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