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Abstract: This project uses Arduino Uno and Unity 3D to create 

a digital twin with IoT capabilities for real-time battery 
monitoring and lifespan prediction. The system monitors battery 
metrics including voltage, current, temperature, State of Charge 
(SoC), and State of Health (SoH) using sensors and an Arduino 
microcontroller. The obtained data is transmitted to a cloud-based 
IoT platform via a Wi-Fi module (ESP8266), allowing for real-time 
remote access. Unity 3D's digital twin simulates the behavior of a 
real battery, providing interactive display of important 
parameters and performance trends. Coulomb counting is used to 
compute SoC, whereas watching the loss of battery capacity over 
time determines SoH. Predictive analytics are used in the system 
to predict the battery's remaining useful life (RUL). When 
performance thresholds are met, alerts and notifications are sent 
via the IoT dashboard and Unity interface. The digital twin 
enhances monitoring and enables predictive maintenance, 
resulting in optimal utilization and preventing unexpected 
problems. This concept has several applications, including electric 
cars, renewable energy storage systems, and consumer electronics. 
This system offers real-time IoT connectivity, 3D visualization, 
and predictive modeling, making it a powerful tool for battery 
management, analytics, and health tracking. 
 

Keywords: Digital Twin of li-ion battery, Degradation Point, 
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1. Introduction 

A. Introduction to IoT Enabled Digital Twins for battery 
The increasing reliance on battery- powered systems in 

industries such as electric vehicles (EVs), renewable energy 
storage, and consumer electronics needs accurate battery health 
monitoring and management. Batteries deteriorate over time as 
a result of repeated charge and discharge cycles, temperature 
fluctuations, and other environmental conditions. To solve 
these issues, real-time monitoring and predictive analytics are 
critical for guaranteeing peak battery performance and 
extending its longevity. 

 
This paper suggests creating an IoT- enabled digital twin for 

battery monitoring and lifespan prediction with Arduino Uno 
and Unity 3D. A digital twin is a virtual simulation of a real-
world battery's activity in real time, allowing users to 
interactively monitor voltage, current, State of Charge (SoC), 
and State of Health (SoH). The system collects data using 
sensors linked to an Arduino Uno and transmits it over Wi-Fi 
(ESP8266/NodeMCU) to an IoT platform for cloud storage and 
remote access. 

B. Exploring the role of IoT Enabled Digital Twins 
Digital Twins transforms battery management by integrating 

real-time monitoring, powerful simulations, and predictive 
analytics. IoT sensors continually collect important metrics 
such as voltage, current, temperature, state of charge (SoC), and 
state of health (SoH), and send this information to a cloud-based 
platform using efficient communication protocols. A Digital 
Twin, which functions as a virtual counterpart of the physical 
battery, combines real-time data with machine learning 
algorithms and physics-based simulations to anticipate 
performance, detect deterioration trends, and estimate 
remaining usable life (RUL). Using this strategy, abnormalities 
may be recognized early, allowing for proactive maintenance 
and decreasing unexpected failures. Predictive algorithms 
optimize charging cycles and use patterns to increase battery 
life while lowering expenses. The system also includes user-
friendly dashboards for displaying real-time information and 
actionable insights. The Unity 3D model serves as the visual 
interface for the digital twin, providing graphical feedback on 
battery status and performance. Predictive algorithms calculate 
SoC and SoH, while the system also forecasts the remaining 
useful life (RUL) of the battery based on historical data. Alerts 
are generated in case of abnormalities or when thresholds are 
breached, enabling proactive maintenance to prevent failures. 
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This project offers a comprehensive solution for battery 
management, diagnostics, and predictive maintenance. 

C. Benefits of the proposed system 
Digital Twin technologies provide a breakthrough solution 

by allowing for real- time data capture, virtual modeling, and 
predictive analysis. IoT-enabled sensors can continually 
monitor critical battery characteristics, whereas Digital Twins 
simulate and evaluate battery behavior under a variety of 
scenarios, delivering precise information about performance 
and deterioration. These technologies handle crucial issues 
including capacity fading, internal resistance increase, and 
thermal instability, enabling exact lifetime prediction and 
proactive maintenance. This integration of IoT and Digital 
Twin technologies improves energy efficiency, eliminates 
waste, and promotes long-term battery use in sectors like 
electric cars, renewable energy storage, and consumer 
electronics. Its applications include smart grids, electric cars, 
portable devices, and energy storage systems, where it provides 
users with better insights and actionable intelligence for battery 
health optimization. 

2. Review Of Literature 
 
N Durga et.al (2023). This paper introduces a digital twin 

framework for the reliability of lithium-ion batteries, focusing 
on accurate life prediction and reliability evaluation. The study 
establishes capacity degradation models, stochastic degradation 
models, and reliability evaluation models to describe battery 
degradation's randomness. An adaptive evolution method based 
on Bayesian algorithms is proposed to enhance prediction 
accuracy, with experimental verification showing that 
prediction errors can be controlled within approximately 5%. 

K Sidahmed et.al (2022). This work proposes a battery digital 
twin structure designed to accurately reflect battery dynamics 
in real-time for electric vehicles. The digital twin relies on data-
driven models trained on battery evolution data, including a 
State of Health (SOH) model and a State of Charge (SOC) 
model, retrained periodically to account for aging effects. The 
proposed structure is exemplified on a public dataset, 
demonstrating high accuracy and inference times compatible 
with onboard execution. 

M Reiners et.,al (2022). This study simulates a 1 MWh grid 
battery system comprising 18,900 individual cells, each 
represented by a separate electrochemical model, along with 
thermal management and power electronic converters. 
Simulations over up to 10,000 cycles and 10 years assess the 
impact of cell-to-cell variability, thermal effects, and 
degradation. Findings highlight that variations in degradation 
rates dominate system behavior over time, and that careful 
thermal management control can improve overall efficiency by 
5 percentage points over on-off methods, increasing total usable 
energy after 10 years. 

 
 

A Sinha et.al, (2021). This paper proposes an effective and 
novel peak extraction method to reduce computation and 
memory needs for predicting the Remaining Useful Life (RUL) 
of battery cells in IoT devices. The model operates with 
minimal external interference, making it suitable for remote 
operations. Experimental results demonstrate the method's 
accuracy and reliability, with a correlation of 0.97 between 
State of Health (SOH) from peak extraction and RUL. 

A Sorenson et.al, (2021). This paper presents a 
comprehensive power consumption model for battery lifetime 
estimation in Narrowband Internet of Things (NB-IoT) and 
Long-Term Evolution for Machines (LTE-M) devices. The 
model is validated through extensive measurements under 
various traffic patterns and network scenarios, achieving 
modeling inaccuracies within 5%. Results indicate that, with 
proper configuration, IoT device battery lifetimes can reach up 
to 10 years as required by 3GPP standards. 

3. Experimental Setup 
Setting up an IoT-enabled Digital Twin for a battery requires 

a mix of hardware, software, sensors, and communication 
protocols to monitor, analyze, and replicate the battery's activity 
in real time. The following is an overview of a common 
experimental setup: 

A. Hardware Components 
• Battery: The monitored battery may be a lithium-ion 

battery from an electric vehicle (EV), renewable 
energy storage, or industrial equipment. 

• IoT Sensors: Voltage and Current Sensors: Used to 
detect voltage and current at battery terminals during 
charging and discharging cycles. 

• Temperature Sensors: Used for tracking the 
temperature at various places throughout the battery 
(e.g., individual cells) in order to prevent overheating. 

• State of Charge (SOC) and State of Health (SOH) 
Sensors: To determine the battery's current charge 
level and estimate overall health using performance 
measures. 

• Pressure and vibration sensors (optional): These detect 
any aberrant physical circumstances that can indicate 
a problem. 

• Microcontroller or Edge Device: A microcontroller, 
such as Raspberry Pi, Arduino, or industrial-grade 
controllers like the BeagleBone or ESP32, receives 
sensor data and sends it to a server or cloud platform 
for processing. 

• Communication Infrastructure: Wi-Fi, Bluetooth, and 
Zigbee: For connecting IoT sensors, 
microcontrollers, and the cloud or local network. 5G 
or LoRaWAN (optional) for wide-area network 
connectivity with big battery fleets or industrial 
applications. 
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Fig.1. Block Diagram 

 

B. Software Components 
• Data collection and management platforms: Such as 

AWS IoT, Microsoft Azure IoT, and Google Cloud 
IoT, store and process sensor data locally or in the 
cloud. This platform takes real-time data, monitors 
battery health, and archives past data for study. 

• Digital Twin program: This program builds a virtual 
representation of the battery. This might be a custom-
built application or software solutions from Siemens 
Digital Industries, PTC Thing Worx, or Dassault 
Systems that model and anticipate battery behavior   
using   real-time   data. The program uses algorithms 
to model battery activity, forecast faults, and enhance 
performance based on sensor data. 

• Machine Learning/AI Models (for Predictive 
Maintenance): Forecast battery health, longevity, and 
failure points. Models may be developed with 
platforms such as TensorFlow, Scikit-learn, and other 
AI tools. 

• Visualization Dashboards: A user-friendly interface 
that present real-time data and insights. Dashboards 
can display charts, graphs, and notifications about 
battery health, charge status, temperature, and other 
performance parameters. Visualization tools include 
Grafana, Power BI, and bespoke online dashboards. 

 
Fig.2. Scanning and Server Database Monitoring Unit 

 

 
Fig.3. Experimental Setup 

 

C. Validation and Testing: 
Validate the Digital Twin's predictions by comparing them to 

real battery performance data. To enhance accuracy, make 
necessary adjustments to machine learning models and sensor 
specifications. Stress the battery testing by submitting it to 
harsh circumstances (for example, high temperatures and quick 
charging) to see how well it responds to real-world settings. 

D. Maintenance and Upgradation: 
Continuously monitor system performance and implement 

enhancements, such as sensor upgrades, software updates, and 
Digital Twin model recalibration, to increase predicted 
accuracy. 

4. Result and Analysis 
The experimental configuration of an IoT-enabled Digital 

Twin for a battery offers 
a strong foundation for monitoring, optimizing, and 

extending battery life in a variety of applications. This system 
leads to: Enhanced performance and efficiency through real-
time monitoring and improved charging/discharging cycles. 
Predictive analytics enables proactive maintenance and failure 
avoidance, resulting in lower expenses for emergency repairs. 
Extended battery life by monitoring health indicators like State 
of Charge (SOC) and State of Health (SOH). Energy and cost 
reductions are achieved through optimal battery utilization and 
smart charging procedures. By providing these data, IoT-
enabled Digital Twins greatly improve battery management, 
resulting in more sustainable and cost- effective energy 
solutions. 
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5. Conclusion 
IoT-enabled Digital twins for batteries are a revolutionary 

technique to monitoring, optimizing, and controlling battery 
systems in a variety of applications, including electric vehicles 
(EVs), renewable energy storage, and industrial systems. This 
system provides numerous significant benefits by integrating 
IoT sensors, real-time data analytics, and predictive algorithms. 

• Enhanced Performance Monitoring: Continuous 
monitoring of battery characteristics such as 
temperature, voltage, and charge cycles ensures 
optimal performance and early identification of 
possible problems, avoiding costly failures. 

• Predictive Maintenance: By integrating machine 
learning and AI, Digital Twins enable predictive 
maintenance, detecting battery health decline before it 
leads to failure, limiting downtime, and lowering 
maintenance costs. 

• Battery Optimization: The system may adapt 
consumption patterns based on real-time data. 

• Lifecycle Management: By simulating different 
situations and projecting the battery's remaining useful 
life (RUL), Digital Twins make it easier to manage 
battery replacement and refurbishment schedules, 
assuring optimal usefulness while eliminating needless 
replacements. 

• Cost Savings and Sustainability: The capacity to 
optimize battery utilization, eliminate energy waste, 
and increase battery longevity leads to considerable 
cost savings and a more sustainable energy strategy. 

To summarize, IoT-enabled Digital Twins for Batteries offer 
a holistic solution for effective battery management, providing 
vital insights for predictive maintenance, optimization, and 
overall performance improvement. These solutions not only 
lengthen battery life, but also improve energy efficiency, reduce 
operational costs, and promote sustainability in a variety of 
industries, including electric cars and renewable energy 
systems. 
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