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Abstract: Personalized medicine relies on identifying which 

patients will benefit most from a given treatment. Traditional 
average treatment effect (ATE) estimates often fail to capture the 
underlying heterogeneity in treatment response. In this study, we 
apply causal-inspired machine learning methods to estimate 
individual treatment effects (ITEs) using observational data from 
the Infant Health and Development Program (IHDP) dataset. We 
apply DoWhy, a Python library for causal inference, to estimate 
ATEs using multiple models (linear regression, propensity score 
matching, weighting, and stratification) and also, we extend the 
analysis to ITEs using meta-learners (T-Learner). The results 
from this study reflect a significant variation in treatment effects 
across individuals, reinforcing the need for personalized treatment 
policies. We conclude with implications for clinical decision-
making and future research directions in causal machine learning 
for medicine. 
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1. Introduction 
The rapid growth of medical data, particularly electronic 

health record Systems (EHRs), has led to the application of 
machine learning for personalized medicine. Recently, machine 
learning has been applied to wide range of problems in medical 
domain as it is particularly suitable for recognizing patterns and 
making predictions. Personalized medicine is about giving 
tailor made treatment to each individual patient based on his or 
her medical history, genetic information, personal information, 
pathology reports, demographic information etc. The goal of 
personalized medicine is to provide each patient with 
individualized care based on their medical history, genetic 
information, personal information, pathology reports, 
demographic data, and other factors [2]. Personalized medicine 
aims to tailor medical interventions based on individual 
characteristics, promising improved outcomes and cost-
effective healthcare delivery.  

 
Machine learning plays a crucial role in personalized 

medicine, by leveraging vast datasets to tailor medical 
treatments to individual patient profiles, thereby enhancing 
treatment efficacy and reducing adverse effects.  

Machine Learning also marks a significant shift from 
traditional one-size-fits-all methods to more precise, data-
driven healthcare solutions. ML algorithms analyze diverse 
data sources, including genetic information, medical history, 
and lifestyle factors, to predict disease risks and optimize 
treatment plans. This integration of ML in personalized 
medicine not only improves patient outcomes but also 
streamlines healthcare operations and accelerates drug 
discovery processes.[2] However, most medical studies report 
only the average treatment effect (ATE), which may obscure 
critical heterogeneity across patients. Estimating the individual 
treatment effect (ITE), defined as the difference between an 
individual's outcomes with and without the treatment, is central 
to advancing precision healthcare. Recent advances in causal 
inference and machine learning have led to robust methods for 
ITE estimation. In particular, the integration of causal 
frameworks such as potential outcomes with flexible machine 
learning models allows for nuanced, individualized predictions 
even in complex biomedical datasets. We demonstrate this 
approach using the DoWhy causal inference library on the 
IHDP dataset, a benchmark in treatment effect modeling. 

2.  Role of Randomized Control Trials in Precision 
Medicine 

Randomized Controlled Trials (RCTs) are widely regarded 
as the foundational pillar of evidence-based medicine. Their 
structured design and statistical rigor make them the preferred 
method for evaluating treatment efficacy. However, in the 
context of precision medicine which seeks to tailor 
interventions to individual patient characteristics, RCTs exhibit 
critical limitations that hinder their relevance and applicability. 
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One of the limitations include Heterogeneity of treatment 
effects (HTEs) which is evident and are commonly ignored in 
RCT. Heterogeneity of treatment effects (HTEs) are related to 
unchangeable traits such as age, sex, race etc. Inability to relate 
how treatment effects vary in such population is both a driver 
of health inequality and a missed opportunity to individualize 
therapy.[3][4]. 

Secondly, a static treatment effect applied to a given 
population per time. Health care and population are two 
different entities that changes per given time, Patient 
demographics, comorbidity patterns and treatment effect are all 
dynamic and can change at any given time, However, once 
undertaken, it is too expensive and time-consuming for RCTs 
to be repeated to update clinical records.[7][8] Research shows 
that more than 50% of RCTs exclude at least 75% of potentially 
eligible patients. These exclusions restrict the generalizability 
of trial results to the very populations most in need of nuanced, 
individualized care. 

Thirdly, Lack of Generalizability, one of the most pressing 
issues is the limited external validity of RCTs. To minimize 
confounding, RCTs often impose strict inclusion and exclusion 
criteria, selecting homogeneous groups of patients. This 
strategy, while improving internal validity, excludes large 
segments of the real-world patient population, particularly older 
adults and individuals with multiple comorbidities. 

A. Causal Inference and the Potential Outcomes Framework 
The Rubin Causal Model formalizes treatment effects 

through potential outcomes: 
Potential Outcome frameworks 
Two Potential outcomes: 𝑌𝑌𝑖𝑖(1)𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌𝑖𝑖(0) 
Causal effects for individual 𝑖𝑖: 𝜏𝜏𝑖𝑖 ≡  𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0) 
Average Treatment Effect (ATE): 
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Obviously: There's a general problem with causal inference, 
2 potential outcomes cannot co-exist i.e we cannot observe two 
potential outcomes at the same time (A transaction cannot be 
fraud and non-fraud at the same time) 

Fundamental Problem of causal inference: Only one of the 
two potential outcomes is observable for every one observation, 
we need a credible way to infer the unobserved counterfactual 
outcomes. 

B. RCT: The Gold Standard for Causal inference 
Key idea: Randomization of the treatment makes the 

treatment and control group "identical" on average 
Treatment and control groups are similar in terms of all (both 

observed and unobserved) other characteristics, so we can 
attribute the average differences in outcome to the difference in 
the treatment under random assignment, we have 

𝑌𝑌𝑖𝑖(1),𝑌𝑌𝑖𝑖(0),𝑋𝑋 ⊥  𝑇𝑇𝑖𝑖 
Which implies  

𝔼𝔼[𝑌𝑌𝑖𝑖(1)|𝑇𝑇𝑖𝑖 = 0] =  𝔼𝔼[𝑌𝑌𝑖𝑖(1)|𝑇𝑇𝑖𝑖 = 1] = 𝔼𝔼[𝑌𝑌𝑖𝑖(1)] and  
𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝑇𝑇𝑖𝑖 = 0] =  𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝑇𝑇𝑖𝑖 = 1] = 𝔼𝔼[𝑌𝑌𝑖𝑖(0)] 

 We can then express the average treatment effect as ATE =
𝔼𝔼[𝑌𝑌𝑖𝑖(1)|𝑇𝑇𝑖𝑖 = 1] −  𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝑇𝑇𝑖𝑖 = 0] 

This is the difference-in-means estimator 

C. Causal Assumptions 
1) Ignorability 

Ignorability: Implies that treatment assignments are 
statistically independent of the subjects potential outcomes 
violation can induce bias: 𝔼𝔼[𝑌𝑌𝑖𝑖(1)|𝑇𝑇𝑖𝑖 = 1] −
 𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝑇𝑇𝑖𝑖 = 0] = 𝔼𝔼[𝑌𝑌𝑖𝑖(1)|𝑇𝑇𝑖𝑖 = 1] − 𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝑇𝑇𝑖𝑖 = 0] + 
𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝑇𝑇𝑖𝑖 = 1] − 𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝑇𝑇𝑖𝑖 = 0] 

= 𝔼𝔼[𝑌𝑌𝑖𝑖(1) −  𝑌𝑌𝑖𝑖(0)|𝑇𝑇𝑖𝑖 = 1] + 𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝑇𝑇𝑖𝑖 = 1]
− 𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝑇𝑇𝑖𝑖 = 0] 

=ATE among the treated + selection bias 
2) Excludability 

Excludability: Potential outcomes respond solely to receipt 
of the treatment, not the random assignment of the treatment or 
any indirect by-product of random assignment violated when 
different procedures are used to measure outcomes in the 
treatment and control groups and research activities, other 
treatments, or third-party interventions other than the treatment 
of interest differentially affect the treatment and control groups. 
3) Stable Unit Treatment Value Assumption (SUTVA) 

Stable Unit Treatment Value Assumption:  
Potential outcomes of observation i reflects only the 

treatment or control status of observation i and not one of other 
observations violated when. 

D. Individualized Treatment in Precision Medicine 
Individualized treatment in precision medicine focuses on 

customizing medical interventions to each patient's particular 
traits, is a revolutionary approach to healthcare. To maximize 
therapy results, this method makes use of genetic, biomarker, 
phenotypic, and psychosocial data. Precision medicine must 
incorporate customized treatment regimens (ITRs) to handle 
complex clinical situations, like those with conflicting hazards 
or ongoing therapy alternatives.[6] The ultimate goal of this 
paradigm change is to improve patient outcomes by increasing 
therapeutic efficacy and reducing side effects. 

The Architecture for Individualized Treatment in Precision 
Medicine is sketched in Figure 1. 
 

 
Fig. 1.  Visual representation of personalized treatment effect in precision 

medicine 
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E. Conditioning on Confounders 
In Electronic Health Record systems (EHRs), the use of 

machine learning and causality assists in extracting actionable 
intelligence from observational patient data, information 
derived assist in estimating individualized treatment effects by 
giving a data-driven methods to inform clinical decision makers 
to recommend prescriptions for drugs in Pharmacology and 
treatment recommendations in medicine.[4][5] However the 
presence of confounders has greater influence in deriving the 
actual treatment of an individual in observational data. There’s 
a need to eliminate biases also known as confounders from the 
EHRs to make our recommendation valid.[6] 

Let 𝑋𝑋: Vector of observed confounders (e.g., age, sex, BMI, 
comorbidities, labs) 
𝑇𝑇: Treatment (binary: 1 = treated, 0 = not treated) 
𝑌𝑌: Outcome (e.g., survival, blood pressure improvement. 
𝑈𝑈: Unobserved variables. 

1) Structural Causal Model 
The Structural Causal Model for the (HERs) is represented 

below. 
𝑋𝑋 ≔ 𝑓𝑓𝑋𝑋(𝑈𝑈𝑋𝑋) 
𝑇𝑇 ≔ 𝑓𝑓𝑇𝑇(𝑋𝑋,𝑈𝑈𝑇𝑇) 
𝑌𝑌 ≔ 𝑓𝑓𝑌𝑌(𝑋𝑋,𝑇𝑇,𝑈𝑈𝑌𝑌) 

The interpretation  
X is determined by some exogenous factors 𝑈𝑈𝑋𝑋 
𝑇𝑇 is assigned based on patient features 𝑋𝑋 (e.g., doctors decide 

treatment based on comorbidities) 
𝑌𝑌 Depends causally on 𝑇𝑇 and 𝑋𝑋 (e.g., treatment and 

comorbidities jointly influence outcome). [8] 
2) Directed Acyclic Graph (DAG) 

Figure 1:  𝑋𝑋 confounds the relationship between 𝑇𝑇 and 𝑌𝑌. 
 

 

 
Fig. 2.  Conditioning on 𝑋𝑋 blocks the backdoor path from 𝑇𝑇 → 𝑋𝑋 → 𝑌𝑌 

 
To estimate the causal effect of T on Y, you must adjust for 

X: 
𝑃𝑃�𝑌𝑌�𝑎𝑎𝑑𝑑(𝑇𝑇)� = �𝑃𝑃(𝑌𝑌|𝑇𝑇,𝑋𝑋 = 𝑥𝑥)𝑃𝑃(𝑋𝑋 = 𝑥𝑥)            (1)

𝑥𝑥

 

Equation (1) above is the backdoor adjustment formula. 

F. Individual Treatment Effect (ITE) 
Individual treatment effects in causality refer to the specific 

impact of a treatment on an individual, which is crucial for 
personalized decision-making in health care. In Personal 

Therapeutics it assist in delivering The paper proposes a 
framework that accurately estimates these effects by addressing 
confounding bias and considering causal structures. 

The Individual Treatment Effect (ITE) for each patient in an 
EHR dataset. 

𝐼𝐼𝑇𝑇𝐼𝐼𝑖𝑖 = 𝑌𝑌1(𝑥𝑥) −  𝑌𝑌0(𝑥𝑥)                                                   (2) 
Where 
𝑌𝑌1(𝑥𝑥):  potential outcome if treated 
𝑌𝑌0(𝑥𝑥) : potential outcome if not treated 
𝑥𝑥: Individual covariates (e.g., age, comorbidities, vitals) 
Assumptions 
No hidden confounding: All confounders are observed 

(strong ignorability). 
1. 𝑌𝑌1, 𝑌𝑌0 ⊥ 𝑇𝑇 | 𝑋𝑋 
2. Positivity: Every patient has a non-zero chance of 

receiving either treatment. 
0 < 𝑃𝑃(𝑇𝑇 = 1 |𝑋𝑋 = 𝑥𝑥) < 1 

3. Consistency: The observed outcome equals the 
potential outcome under the received treatment. [8][9] 

3. Methodology 
The Dataset use for this study is the Infant Health 

Development Program Dataset (IHDP dataset), which 
simulates a randomized control trial with added selection bias 
to reflect real-world observational challenges. The dataset 
comprises 747 infants, including both treated and control 
subjects, along with 25 covariates representing demographic 
and clinical features 

Treatment: Enrollment in an early childhood development 
program. 

Outcome: Cognitive test scores at age three. 
Covariates: Maternal age, education, birth weight, prenatal 

care, among others. 

A. Causal Framework 
We adopt the Neyman-Rubin potential outcomes model, 

assuming unconfoundedness (no unmeasured confounders), 
and define the individual treatment effect as: 

𝐼𝐼𝑇𝑇𝐼𝐼𝑖𝑖 = 𝑌𝑌𝑖𝑖(1) −  𝑌𝑌𝑖𝑖(0)                                                    
Where 𝑌𝑌𝑖𝑖(1) and 𝑌𝑌𝑖𝑖(0) are the potential outcomes under 

treatment and control, respectively.[9] 

B. Estimation Methods 
We apply two estimation strategies using the DoWhy Python 

library: 
1) Backdoor Adjustment (Linear Regression) 

The backdoor criterion enables us to determine how to learn 
causal effects by adjusting or conditioning on a set of variables 
that block all backdoor paths. In the case where all confounders 
are measured, one way to perform such an adjustment is via 
regression. 

Estimation of the ATE using linear regression conditioned on 
observed confounders. 
2) Meta-Learner (Two-Model Approach) 

The T-learner is a meta-learner approach that builds separate 
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models for treated and control groups. 
Separate models for treated and control outcomes using 

Ridge regression to predict  𝑌𝑌1 and 𝑌𝑌0. The Individual Treatment 
Effect (ITE) is estimated as the difference. 𝑌𝑌1 −  𝑌𝑌0. 

Model performance is evaluated by comparing estimated 
ITEs to the known simulated ground truth. 

C. ITE Estimation 
The meta-learner approach showed strong agreement 

between predicted and true ITEs. A scatter plot of predicted vs. 

true ITEs revealed a tight linear trend, indicating high fidelity 
of the model. The distribution of estimated ITEs confirmed 
substantial heterogeneity, with some individuals predicted to 
benefit significantly more than others. The Predicted and the 
True Individual Treatment Effects (ITEs) for the IHDP dataset 
is shown below in Figure 2. 

4. Results 

A. Average Treatment Effect Estimation 
The result from T-Learner's ATE estimate is 4.012 which 

closely matches the ground truth of 4.021 IPW, this makes T-
Learner performs comparably well to IPW (4.029) for average 
effect. 

B. Individual Treatment Effect Estimation 
The T-Learner achieves lower MAE of 1.89 compared to the 

range of 2.28 to 2.51 derived from other methods. Higher 
treatment effect correlation of 0.72 indicates better capture of 
heterogeneous effects. This implies that T-learner listens to 
heterogeneity in treatment responses. 

The backdoor linear model yielded an estimated ATE of 
approximately 4.5, closely matching the ground-truth ATE of 
4.39. This validates the ability of a simple parametric model to 
recover population-level effects under appropriate 
identification assumptions. 

The analysis of the different estimation techniques, with the 
following results: 

C. Discussion 
These findings highlight the utility of causal-inspired 

machine learning in uncovering individual heterogeneity in 
treatment response. While ATE provides useful population-
level insights, ITE estimation enables personalized intervention 
strategies that can improve clinical outcomes and reduce 
unnecessary treatments. The DoWhy framework, combined 
with machine learning, offers a transparent and extensible 
platform for ITE estimation. The IHDP case study further 
shows that even in semi-simulated data with inherent biases, 
reliable ITE estimation is feasible. This has direct implications 

for real-world personalized medicine, where similar biases are 
often present in electronic health record (EHR) data [12]. 

T-learner demonstrates a better estimation approach when 
compared to the traditional methods in computing the 
Individual Treatment effects with Lower PEHE and MAE, T-
learner provides a robust approach for estimating individual 
treatment effects from observational data in Precision 
Medicine. 
 

 
Fig. 3.  Comparison of causal estimates across different methods 

 

 
Fig. 4.  Histogram showing variation in individual treatment effects. 

D. Conclusion & Recommendation 
This study demonstrates that causal-inspired machine 

learning methods can accurately estimate individual treatment 
effects from observational data, this has ability to enhance 
personalized medicine. Causal inference methods with 
integration of machine learning are essential for personalized 
medicine, offering tailored insights beyond average outcomes. 
Treatment effects can vary across individual, hence T-learner, 
a variant of Meta-learner provides a robust ITE estimates. 
 

 
Fig. 5.  Histogram showing comparison of individual treatment effect of mean 

absolute error across different learners 

Table 1 
Estimation Method ATE Estimate ITE MAE PEHE Treatment Effect Correlation 
Linear Regression 3.929 2.45 3.02 0.58 
Propensity Score Matching 3.979 2.32 2.87 0.63 
Propensity Score Stratification 3.455 2.51 3.15 0.55 
Propensity Score Weighting 4.029 2.28 2.79 0.65 
T-Learner 4.012 1.89 2.14 0.72 
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In conclusion, Meta-learners are better off in estimating 

Individual treatment effects especially when a personalized 
intervention is paramount. 
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