

International Journal of Progressive Research in Science and Engineering

Volume-1, Issue-5, August-2020

www.ijprse.com

59

Design of A Self-Healing Mechanism for Wireless Sensor Networks

Sannidhi P1, Sathwik R. Gutti1, R Shamanth M1, Sai Charan R1, Manjunath kotari S2

 1Student, Department of Computer Science Engineering, Alva’s Inst. of Engg. and Tech., Moodbidri, India.

 2Assosiate Professor, Department of Computer Science Engineering, Alva’s Inst. of Engg. and Tech., Moodbidri, India.

Corresponding Author: sathwikrgutti@gmail.com

Abstract: - A sensor network consists of multiple detection stations called sensor nodes, each of which is small, lightweight and
portable. Self-healing in Sensor Networks are increasingly becoming important. Especially in wireless sensor network, interference

is anything which modifies, or disrupts a signal as it travels along a channel between a source and a receiver .Successful

communication occurs in a wireless sensor network only in the absence of interference which is usually achieved by assigning

non- interfering channels to the pairwise links (edges) that are necessary for good connectivity To overcome this, self-healing

mechanism is used when the interference occurs, while communicating with each other. In this regard designing a self-healing

routing mechanism for sensor networks, which restore connectivity after a node failure. This can be achieved by using the

MATLAB tool for creating a base-level accessible, open-source, real- time ad-hoc routing scheme simulations, here we are

targeting the ad-hoc on-demand distance vector (AODV) routing protocol.

Key Words: — Wireless sensor networks, security, self-healing.

I. INTRODUCTION

The per-packet routing path serves as the meta-information
for understanding detailed Wireless Sensor Networks

(WSNs) behaviours in many network maintenance and

diagnosis situations, e.g., routing dynamics [33], detections

on wormholes [9] or packet loss holes [32], end-to-end

packet transmission delay [29] or even perhaps per-packet

transmission delay [13], network diagnosis [18] [26], etc.

Reconstructing per-packet routing path information,

however, has been known non-trivial. WSNs are self-

organized and usually deployed in dynamic environments.

The underlying network topology constantly changes and no

fixed routing path can be expected for each node [30]. A

straightforward solution to reveal the packet\ path is to record
the complete path during packet forwarding, e.g., storing the

ID sequence of all relay nodes, in each packet. The

introduced overhead linearly grows with the routing path

length, far scalable. The key insight of our design is as

follows. The length of a routing path is usually much smaller

than the network size. As a concrete example, the maximum

path length reported in City See [22] is only 20 hops in

comparison with its network size of 1200 nodes. Therefore,

we can construct a path representation space, the number of

whose dimension’s equals to the total number of nodes in the

network. In such a representation space, an arbitrary routing
path can be represented by a path vector, where each element

corresponds to a node in the network. The path vector sets the

hop numbers for nodes on the path and zeros for those not

involved in the path. As the path length is much smaller than

the network size, such path vectors are thus sparse, i.e., the

majority of elements are zeros. The path reconstruction

becomes a problem of unveiling all existing path vectors

hidden in the representation space. If all nonzero elements of
a path vector can be encoded (with few bytes) into the packets

forwarded along the path, we can recover the path vector (and

thus the represented routing path) based on a small amount

of packets using compressive sensing technique [5] [12].

In this paper, we propose a Compressive Sensing based Path

Reconstruction method, CSPR, which formalizes the sparse

path representation and leverages compressive sensing to

recover per packet routing path. CSPR lets intermediate
nodes briefly annotate the transmitted packets and classifies

packets travelling along different paths into different groups.

For a particular path, the forwarded packets encode

independent observations and CSPR performs compressive

sensing to recover the path when a certain amount of pack

etc. (and the annotations) are collected at the sink. The path

reconstruction by CSPR requires no inter-packet correlations

and utilizes only a small number of received packets. CSPR

is thus invulnerable to topology dynamics and lossy links. On

the protocol level, CSPR introduces only small and fixed

overhead in annotating each packet, which could be
optimized accordingly for practical WSNs (e.g., 8 bytes per

packet for a network with 245 nodes). In addition to the basic

design, we further propose a set of optimization techniques

to gradually shrink the representation space and heuristically

scan possible paths for all unrecovered path vectors through

the network topology learnt from already reconstructed

routing paths. The numbers of packets needed for remaining

path reconstructions are lowered and processing is thus

accelerated. To examine the performance of CSPR, we first

evaluate our method using a AODV testing method. The

International Journal of Progressive Research in Science and Engineering

Volume-1, Issue-5, August-2020

www.ijprse.com

60

experiment results validate the feasibility and applicability of

CSPR in practice. We further conduct extensive and large-

scale trace-driven simulations to examine the efficiency and

scalability of CSPR. Compared to the state-of-the-art

methods, CSPR achieves higher path recovery accuracy (i.e.,

100% and 96% for experiments and simulations,

respectively) with comparable overhead (8 extra bytes per

packet).

II. THEORETICAL CONSIDERATION

In a WSN, all sensor nodes generate and relay packets to the

sink along some routing paths [28]. At the sink, a path

reconstruction method is desired to recover the routing path

each packet traveled. One packet path is an ID sequence from

the source of the packet to the sink, including IDs of all

intermediate nodes relaying this packet and their hop

numbers as well. There have been many efforts made to

address the path reconstruction problem (as reviewed in

Section 5). Two state-of-the-art methods, MNT [16] and

Pathfinder [14], have been recently proposed. MNT [16]

reconstructs per-packet path by exploiting inter packet
correlation, i.e., a relayed packet and its adjacent packets

locally generated at any node i are usually forwarded to the

same next hop. Such local packets serve as anchors of the

relayed packet at node i. As the first-hop receiver is recorded

in packets, the path of a packet can be obtained by

concatenating the first-hop receivers of all its anchors.

Improving on MNT, Pathfinder [14] tolerates certain

inconsistence in inter- packet correlation via explicitly

recording inconsistence in packets. The reconstruction failure

occurs once the inconsistence exceeds the tolerance capacity.

To accurately locate anchors, Pathfinder further imposes the
packet generation rate of each node to be identical and fixed.

Both MNT and Pathfinder require stable network topology

such that inter-packet correlation can be captured. The

practical WSNs, however, behave dynamically and the

wireless links are far from stable [17] Both network dynamic

and packet loss have strong impacts on the anchor

identifications, and thus deteriorate the performances of

MNT and Pathfinder.

Ad-hoc On-demand Distance Vector(AODV) was developed

almost 15 years ago, it still remains highly studied in the

current state of the art. AODV is a reactive routing protocol

that aims to reduces overhead by requiring few network-wide

broadcasts. There is no centrally kept routing information and

each node discovers routes only as necessary. Only in the

event that a node does not know a path to its target

destination, does it initiate a network- wide broadcast. This is

known as flooding and involves a series of route request

messages that propagate through the network, landing once

on each connected node

until that node either is the destination, or knows a path to the

destination. As flooding is the single most expensive action
within AODV. A key feature of AODV is its elegant error

handling. In this case, that a node cannot complete a link

stored in its route table, a route error message must be sent.

Whenever this happens during a data send transmission, the

transmission must be halted and a route error message

propagated all the way back to the source node. While this

does eliminate the need for a network wide broadcast

initially, this could still be a significant cause for additional

overhead. After the propagation back to the source, flooding

must occur again to determine new route.

A. Key point detection

AODV is an on-demand routing algorithm in that it

determines a route to a destination only when a node wants

to send a packet to that destination. It is a relative of the

Bellman-Ford distant vector algorithm, but is adapted to

work in a mobile environment. Routes are maintained as long

as they are needed by the source. AODV is capable unicast

and multicast routing. AODV enables dynamic, self-starting,
multi-hop routing between mobile nodes wishing to establish

and maintain an ad-hoc network. It allows for the

construction of routes to specific destinations and does not

require that nodes keep these routes when they are not in

active communication. The AODV protocol is only use when

two endpoints do not have a valid active route to each other.

In AODV, every node maintains a table, containing
information about which neighbor to send the packets in

order to reach the destination. Sequence numbers, which is

one of the key features of AODV, ensures the freshness of

routes. And in AODV,

networks are silent until connections are established.

Network nodes that need connections broadcast a request for

connection. The remaining AODV nodes forward the

message and record the node that requested a connection.
Thus, they create a series of temporary routes back to the

requesting node. AODV determines a route to a destination

only when a node wants to send a packet to that destination.

Routes are maintained as long as they are needed by the

source.

Sequence numbers ensure the freshness of routes and

guarantee the loop-free routing. A new AODV-based routing
protocol they call Dynamic Connectivity Factor routing

Protocol (DCFP). This protocol also monitors local nodes

and attempts to use additional local parameters to resolve

route errors, thereby creating less overhead. One

distinguishing feature of AODV is its use of a destination

sequence number for each route entry. The destination

International Journal of Progressive Research in Science and Engineering

Volume-1, Issue-5, August-2020

www.ijprse.com

61

sequence number is created by the destination to be included

along with any route information it sends to requesting nodes.

Using destination sequence numbers ensures loop freedom

and is simple to program. Given the choice between two

routes to a destination, a requesting node is required to select

the one with the greatest sequence number.

Fig.1. Call for send packet

B. Key point description

 MATLAB (matrix laboratory) is a multi-paradigm

numerical computing environment and fourth-generation

programming language. A proprietary programming

language developed by MathWorks, MATLAB allows

matrix manipulations, plotting of functions and data,

implementation of algorithms, creation of user interfaces, and
interfacing with programs written in other languages,

including C, C++, Java, FOR- TRAN and Python. MATLAB

is a high-performance language for technical computing. It

integrates computation, visualization, and programming

environment. Furthermore, MATLAB is a modern

programming language environment: it has sophisticated

data structures, contains built-in editing and debugging tools,

and supports object-oriented programming. These factors

make MATLAB an excellent tool for teaching and research.

MATLAB is widely used in all areas of applied mathematics,

in education and research at universities, and in the industry.

MATLAB stands for MATRIX Laboratory and the software

is built up around vectors and matrices. This makes the

software particularly useful for linear algebra but MATLAB

is also a great tool for solving algebraic and differential

equations and for numerical integration. MATLAB has

powerful graphic tools and can produce nice pictures in both

2D and 3D. It is also a programming language, and is one of

the easiest programming languages for writing mathematical

programs. MATLAB also has some tool boxes useful for
signal processing, image processing, optimization, etc.

Although MATLAB is intended primarily for numerical

computing, an optional toolbox uses the MuPAD symbolic

engine, allowing access to symbolic computing abilities. An

additional package, Simulink, adds graphical multi-domain

simulation and model-based design for dynamic and

embedded systems. The MATLAB application is built

around the MATLAB scripting language. Common usage of

the MATLAB application involves using the Command
Window as an interactive mathematical shell or executing

text files containing MATLAB code. Like other scripting

languages MATLAB also provides facilities for variables,

vectors, matrices.

III. PROPOSED ALGORITHM

The main objective of the Self-healing mechanism in

wireless sensor network is to detect the error and

automatically en-routes the another shortest path except the

earlier path. Ad-hoc On-demand Distance Vector(AODV)

Routing Protocol is used to find the shortest path based on

the congested or dead node then it en-route the path and

calculate the shortest path from source to destination.

A Source will be the route node for all the nodes and it creates

path to each and every node.

A Destination the destination node is considered as the final
node to find the shortest distance between the starting node

to the ending node.

The Path-Connection The nodes are connected between the

adjacent nodes and the source node is considered as the root

node and creates path to all other nodes then finds the shortest

path to the destination node.

A. Key point detection

Call to sendPacket: The sendPacket function is called with

the parameter of source node and destination. By checking

the arguments bring global into scope. Initialize persistent

variable and finally get the sequence number. Then, initialize

the table and add the start node for the function. If the node

has a route entry for the destination, and try to send normally.

Ignore and routes marked by request error. Then make a time
to lightup paths iteratively. Finally remove the route with

expired lifetime.

Initialize table of Hops: A table data structure stores all the

messages sent throughout the network as part of this

interaction. It contains node, nextNode, messageType, depth,

where depth is the iteration that it will be highlighted on when

being displayed on the user interface.

Source has route entry for destination: If the source node has

a valid route to the destination, a call to send () is attempted.

If the call to send fails (i.e. encounters a route error), then

International Journal of Progressive Research in Science and Engineering

Volume-1, Issue-5, August-2020

www.ijprse.com

62

flood () is called instead. Both subroutines write their

changes to the table of hops.

Call to send (): The call to send () is relatively

straightforward. Here sends a packet normally assuming the
route table has an entry for it. Then, checks for existing route

entry packets. Look in current nodes route table for the next

hop node otherwise exit if no node was found. If expecting to

have a valid path by request error, update lifetime field for

the route. Then update the table otherwise exit when it

reached the destination and set success to

true.

Call to Flood(): Flood may be called repeatedly, if necessary.

Once the computation is complete, the table of hops is parsed

and the routes are iteratively highlighted on the user interface

to simulate data flow. Performs network flooding for route

discovery and walk down table rows and add connected

nodes breadth-first then get connected nodes. Remove

duplicates when finished at the depth. Then, find the distance

between Node and from for all occurrences of duplicated

node. Remove occurrences but the one with the minimum
distance. If the node happens to have a valid entry on the

route table, go ahead and send normally. Add each of this

nodes connected nodes unless its already on the table before

depth.

Congestions in the node: The WSN is a built of” nodes”-

from a few to several hundred are even thousands, where

each node is connected to one (or sometimes several) sensors.
Each such sensor network node has typically several parts: a

radio transceiver with an internal antenna, a microcontroller,

an electronic circuit for interfacing with the sensors and an

energy source, usually a battery or an embedded form of

energy harvesting.

Failure of nodes in the Sensor networks:

Self-healing discover, diagnose, and react to network

disruptions. Self-healing components can detect system

malfunctions or failures and start corrective actions based on

defined policies to recover the network for a node. The

automatic recovery from damages improves the service

availability.

IV. EXPERIMENT AND DISCUSSION

The results obtained are as discussed below

Fig.2. Creation of nodes

Fig.3. Error path detection

Fig.4. Self-healed shortest path

After receiving the acknowledgement from the destination

node, then the self- healed node is discarded while

establishing a path. Thus, the shortest path is created from

source to destination.

International Journal of Progressive Research in Science and Engineering

Volume-1, Issue-5, August-2020

www.ijprse.com

63

Fig.5. Network overhead with multiple source and destination

This represents an initial flooding where there are 2 source

sends the data packets to different destination hops.

Therefore, it is inconsistent from single source to multiple.

The subsequent routing table is shown. The sequence number

have increased several times. Each time the nodes notice a

change in their local network topology the increase their

sequence numbers. All nodes connected or disconnected

from A have been reminted to 2.

The frequent movement in figure 13 causes the route request

rate to finally surpass the data rate and would likely be

enough to overwhelm the controllers on most realistic nodes.

In such a high mobility case, a specialized routing algorithm

would likely need to be utilized as AODVs performance is

lacking here.

Fig.5. Network overhead

This represents an initial flooding where there are 2 source

sends the data packets to different destination hops.

Therefore, it is inconsistent from single source to multiple.

V. CONCLUSION AND FUTURE SCOPE

The main aim of this project implementation is to overcome

the congestion which occurs in between the nodes. For this,

the project creates a wireless sensor node to find the shortest

path from the source to destination. The source node will start

to calculate the shortest path by visiting each and every node.

If any of the nodes fails due to some reason congestion occurs.

In this situation, the project self-heals the network by

recalculating and selecting new shortest path. This can be

achieved by using one of the routing protocol called Ad-hoc

On-demand Distance Vector(AODV) routing protocol. Then

the MATLAB-based ad-hoc on-demand distance vector
(AODV) simulation presented here provides a meaningful

method of demonstrating basic routing concepts quickly and

easily. The MATLAB environment provides for easy

inspection and expansion into additional analysis with the

provided functionality

In this regard designing a self-healing routing mechanism for

sensor networks, which restore connectivity after a node
failure. This can be achieved by using the MATLAB tool for

creating a base-level accessible, open-source, real- time ad-

hoc routing scheme simulations, here we are targeting the ad-

hoc on-demand distance vector (AODV) routing protocol.

International Journal of Progressive Research in Science and Engineering

Volume-1, Issue-5, August-2020

www.ijprse.com

64

REFERENCES

[1]. Jennifer Yick, Biswanath Mukherjee, Dipak Ghosal,

Wireless sensor network survey, Department of Computer

Science, University of California, Davis, CA 95616,

United States.

[2]. Atsuko Miyaji and Kazumasa Omote, Self-healing

wireless sensor networks, School of Information Science,

JAIST, Nomi, Japan.

[3]. StuartMiller, Rea ltime AODV Simulation in MATLAB,

Department of Electrical and Computer Engineering

Missouri University of Science Technology.

[4]. Markus Lanthaler, Self-Healing Wireless Sensor

Networks, Department of Computer Science, University of

Helsinki.

[5]. Charles E. Perkins, Elizabeth M. Belding-Royer, and

Samir Das, Ad-Hoc On Demand Distance Vector (AODV)

Routing, Proceedings of IEEE WMCSA’99, New Orleans,

LA, February 1999.

[6]. Sumathi.S and Chandrasekaran M, Self-Healing Wireless

Sensor Network, Anna University, Coimbatore India.

