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Abstract: Wildfires are one of the costliest and deadliest natural disasters in the US, causing damage to millions of hectares of forest 
resources and threatening the lives of people and animals. Of particular importance are risks to firefighters and operational forces, 
which highlights the need for leveraging technology to minimize danger to people and property. FLAME (Fire Luminosity Airborne-
based Machine learning Evaluation) offers a dataset of aerial images of fires along with methods for fire detection and segmentation 
which can help firefighters and researchers to develop optimal fire management strategies. This paper provides a fire image dataset 
collected by drones during a prescribed burning piled detritus in an Arizona pine forest. The dataset includes video recordings and 
thermal heatmaps captured by infrared cameras. The captured videos and images are annotated, and labeled frame-wise to help 
researchers easily apply their fire detection and modeling algorithms. The paper also highlights solutions to two machine learning 
problems. 
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I. INTRODUCTION 

Wildfires have caused severe damage to forests, wildlife 
habitats, farms, residential areas, and ecosystems during the 
past few years. Based on the reports from National 
Interagency Fire Center (NIFC) in the USA, total number of 
51,296 fires burned more than 6,359,641 acres of lands yearly 
on average from 2010 to 2019 accounting for more than $6 
billion in damages [1], [2]. These alarming facts motivate 
researchers to seek novel solutions for early fire detection and 
management. In particular, recent advances in aerial 
monitoring systems can provide first responders and 
operational forces with more accurate data on fire behavior for 
enhanced fire management. Traditional approaches to 
detecting and monitoring fires include stationing personnel in 
lookout towers or using helicopters or fixed-wing aircraft to 
surveil fires with visual and infrared imaging.  

 

 

 

 

 

 

 

 

Recent research has suggested Internet of Things (IoT) 
innovations based on wireless sensor networks but such 
networks would require further investment and testing before 
providing practical information. At broader scales, satellite 
imagery is widely used for assessing fires globally, but 
typically at relatively coarse resolution and with the 
availability of repeat images constrained by satellite orbital 
patterns. 

Considering the challenges and issues of these methods, using 
Unmanned Aerial Vehicles (UAVs) for fire monitoring is 
gaining more traction in recent years.     

UAVs offer new features and convenience including fast 
deployment, high maneuverability, wider and adjustable 
viewpoints, and less human intervention. Recent studies 
investigated the use of UAVs in disaster relief scenarios and 
operations such as wildfires and floods, particularly as a 
temporary solution when terrestrial networks fail due to 
damaged infrastructures, communication   problems, or 
spectrum scarcity. 

II. PROPOSED METHODOLOGY 

There are a huge number of routing protocols present for 
sensor networks. First time these routing protocols were 
presented in an organized way by Al-Karaki and Kamal[1], 
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this survey covered almost all aspect of routing protocol, 
classification and architecture. But all these basic protocols 
have been implemented without the security. Karlof et.al.[7] 
describe the attacks on different routing protocols and provide 
the countermeasures, which is the base of the many research. 

All these attacks come under active attack. The attacker is also 
classified as laptop class attacker - mote class attacker and 
insider attacker - outsider attacker [7]. Most of the outsider 
attacker can be prevented by link layer security using a global 
shared key, but in the presence of insider attacker      or 
compromised nodes it is ineffective [7]. works. SPINS[13] 
provides the two generalized mechanism; 

SNEP for confidentiality, authenticity, integrity and freshness 
of data and second µTESLA for authenticated broadcasting, 
but with the extra over head of buffering messages prior to 
key disclosure that increase the latency and generating own 
key chain for every single communication. 

LEACH[4] is the first and very popular concept of clustered 
routing without any security. SecLEACH[11] provides an 
efficient solution for secure communication in LEACH with 
the help of random key pre-distribution and µTESLA and 
overcomes some of the attacks. Again, to provide effective 
solution for secure communication in LEACH, RLEACH[18] 
has been introduced with improved random key pre-
distribution scheme. Some work has been done in secure 
hierarchical routing protocol; Tubaishat et.al.[16] have 
described energy efficient hierarchical routing protocol with 
group key management scheme, but when changing the 
cluster head all group keys (i.e., inter cluster and intra cluster) 
have to calculate again, is an overhead associated with this 
protocol. NHRPA[5] is also an approach towards secure 
hierarchical routing which provide security under node 
compromise attack. Quan et.al.[14] offer security against 
exterior adversary and inner compromised nodes by gene and 
reputation management tools with extra burden of 
computation and communication. 

All the hierarchical routing protocol has been implemented 
with the efficiency in mind. If once, we leave the issue of 
security, there are some other issues exist in clustering 
protocol like; orphan nodes problem and multihop path (from 
the cluster head to the base station). In this paper we 
overwhelmed these two problems. 

There are many multipath routing protocols [6], [3] exist, 
which increase resilience and reliability at the expense of in- 
creased energy consumption, traffic generation and overhead 
of maintaining the alternative paths. In this paper, we 

overcome these problems with security as a main issue. 

Some secure multipath routing protocols have also intro- 
duced like; Wenjing Lou[9] has proposed a protocol which is 
capable of finding multiple node-disjoint paths from the each 
source node to the common sink(i.e. base station). Parno et al. 
[12] have implemented a protocol to ensure node-to-node 
message delivery, even if the sensor network is under active 
attack. INSENS[2] and SEEM[10] both sent the neighbor 
information to the base station for computing multipath from 
source to sink, but in INSENS, BS unicasts the multipath  
table to each associated nodes and SEEM works as a data 
centric protocol, which floods the query to the network and  
the node which satisfies the query will send a request for the 
routing path to the base station. SEEM justifies the security 
without using any cryptographic mechanism, unlike INSENS 
uses cryptography for preventing many attacks. 

In this paper, we also use the same mechanism, used in 
INSENS and SEEM but added the concept of clustering. 

III. SENSOR NETWORK SYSTEM ASSUMPTION 

In the wireless sensor network system lifetime, we follow 
these assumptions. 

3.1 The sensor nodes are randomly 

deployed in the network. (2) It is the homogeneous system 
model where all nodes have similar storage, communication 
and computation capabilities. (3) BS is secured and possesses 
a high memory, computation and battery power. (4) Every 
node has a unique ID, a certificate signed by authority (i.e.  
base station) and a shared key with the base station.  (5)  All 
sensor nodes are static in nature. (6) All sensor nodes    are 
symmetrical, that is same frequency has been used to 
communicate with each other. (7) Every node has the same 
energy source that is non-chargeable battery. The sensor node 
dies as its battery exhausts. (8) In the cluster, there should     be 
only one-hop communication between nodes and cluster head. 
(9) It is not necessary that the distance between cluster heads 
and the base station is one-hop. (10) Every sensor node’s 
communication range should be constant and predefined. 

IV. FIRE SEGMENTATION 

This section considers the problem of image segmentation for 
frames labeled as “fire” by the fire classification algorithm 
presented in Section. Studying the fire segmentation problem 
is useful for scenarios like detecting small fires. Also, fire 
segmentation helps fire managers localize different discrete 
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places of active burning for the purpose of fire monitoring. 
The goal is to propose an algorithm to find the pile burn 
segments in each frame and generate relevant masks. These 
segmentation problems were handled differently in the past 
using image processing and RGB threshold values to segment 
different data batches which exhibits relatively high error 
rates. The goal is to develop an image semantic segmentation 
to perform a pixel-wise classification for each frame at the 
pixel level to define a fire mask for the generated output. To 
accomplish this task, a DCNN model is implemented to 
predict the label of each pixel based on the imported data. This 
segmentation problem can be recast as a binary pixel-wise 
classification problem, where each pixel can take two labels: 
“fire” and “non-fire” (background). To accomplish the image 
segmentation task, the fire test dataset from Section is 
considered as a training dataset. To train a DCNN model, a 
Ground Truth Mask dataset is required. Different tools and 
applications such as Labelbox , Django Labeller , LabelImg, 
MATLAB Image Labeler , GNU Image Manipulation 
Program (GIMP) , etc are available to perform different types 
of the manual image segmentation such as pixel labeling, 
annotation (rectangles, lines, and cuboid) on the Regions Of 
Interest (ROI) to provide training data for the utilized deep 
learning model. The MATLAB (TM) Image Labeler is used 
on 2003 frames to generate the Ground Truth Masks. This 
subcategory of the FLAME dataset of masks and images is 
presented in. The implemented image segmentation model is 
adopted from the U-Net convolutional network developed for 
biomedical image segmentation. U-Net is an end-to-end 
technique between the raw images and the segmented masks. 
A few changes are made to this network to accommodate the 
FLAME dataset and adapt it to the nature of this problem. The 
ReLU activation function is changed to Exponential Linear 
Unit (ELU) of each two-dimensional convolutional layer to 
obtain more accurate results. The ELU function has a negative 
outcome smaller than a constant α for the negative input 
values and it exhibits a smoother behavior than the ReLU 
function. The structure of the customized U-Net is shown in. 
The backbone of the U-Net consists of a sequence of up-
convolutions and concatenation with high-resolution features 
from the contracting path. 

The size of the input layer is 512 × 512 × 3 designed to match 
the size of the input’s images and three RGB channels. For 
computational convenience, the RGB values (between 0 and 
255) are scaled down by 255 to yield float values between 0 
and 1. 

 

 Next, it follows the first contracting block including a two-
dimensional fully convolutional layers with the ELU 
activation function, a dropout layer, another same fully 
convolutional layer, and a two-dimensional max pooling 
layer. This structure is repeated another three times to shape 
the left side of the U shape. Next, there are two two-
dimensional fully connected layers with a dropout layer in 
between, the same structure of the left side is repeated for the 
right side of the U shape to have a symmetric structure for the 
up-convolution path in each block. Also, there exists a 
concatenation between the current block and the peer block 
from the contracting path. Since the pixel-wise segmentation 
is a binary classification problem, the last layer has the 
Sigmoid activation function. 

The DCNN utilizes a dropout method to avoid the overfitting 
issue in the FLAME dataset analysis and realize a more 
efficient regularization noting the small number of ground 
truth data samples. The utilized loss function is the binary 
cross entropy similar to. The Adam optimizer is used to find 
the optimal value of weights for the neurons. The evaluation 
of the FLAME-trained model with the ground truth data is 
described in Section. The implemented code for this section is 
available on GitHub. The detailed explanation for the 
repository and the code is available on GitHub. This section 
uses items 9 and 10 from to access the fire images and their 
ground truth data masks. The user can change the Mode to 
“Segmentation” in the config.py file to run the fire 
segmentation code. The user can change all variables such as 
batch size, number of epochs, number of classes and channels, 
and training and test sets ratio in the config.py file 

 

 
Fig. 1. Pile burn detection using deep learning 
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Fig. 2. Graph representation 

Any intermediate node who receives the NBR INFO packet 
will perform following operations: (1) First check the 
authenticity of the sender node by its certificate. (2) If the 
sender node ID is authenticated, receiver node rebroadcast the 
packet. (3) If the receiver node again receives the same packet 
with same ID, simply drops the packet. For that every node 
maintains a table, called received packet table. 

In this way, it reduces the traffic of the network and save some 
energy of the node. When the NBR INFO packet reaches to 
the BS as shown in fig.2, BS will verify the MAC for the 
integrity and authenticity and encrypts the neighbor 
information with the unique shared key between sender node 
and the base station. We use MAC which is generated by    the 
data and encrypted by the unique shared key, so that no 
adversary can spoof or manipulate the neighbor information. 

V. CONCLUSION  

This paper provided the FLAME (Fire Luminosity Airborne-
based Machine learning Evaluation) dataset for pile burns in 
Northern Arizona forest. Two drones were used to collect 
aerial frames and videos in four different palettes of normal, 
Fusion, WhiteHot, and GreenHot using normal and thermal 
cameras. The frames were used in two different applications, 
in the first challenge, a convolutional neural network was used 
as a deep learning binary fire classification to label data. In the 
second approach, a machine learning approach was proposed 
to extract fire masks from fire labeled data as an image 
segmentation technique. These exemplary applications show 
the utility of the FLAME dataset in developing computer tools 
for fire management and control. Also, FLAME dataset can 
be used as a benchmark dataset for testing generic image 
processing algorithms. We provide numerical result for the 
performance of the proposed two algorithms developed for 
image classification and detection. We believe that 
developing more advanced models by the research community 

can further improve the reported results. Another potential use 
for this dataset is developing fire classification and detection 
algorithms by a collective analysis of different imaging 
modalities including regular and thermal images. Also, 
researchers can utilize fire segmentation methods to define 
related networking and monitoring problems, such as optimal 
task scheduling for a fleet of drones to optimally cover the pile 
burns in a certain region at shortest time possible. 
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