Solution Of the Diophantine Equation $143^{x}+85^{y}=z^{2}$

Sudhanshu Aggarwal ${ }^{1}$ ，Chetan Swarup²，Deepak Gupta ${ }^{3}$ ，Satish Kumar ${ }^{4}$
${ }^{1}$ Assistant Professor，Department of Mathematics，National Post Graduate College，Barhalganj，Gorakhpur，Uttar Pradesh，India．
${ }^{2}$ Department of Basic Sciences，College of Science \＆Theoretical Studies，Saudi Electronic University，Riyadh－Male Campus，Riyadh，Saudi Arabia．
${ }^{3}$ Research Scholar，Department of Mathematics，D．N．College，Meerut，Uttar Pradesh，India．
${ }^{4}$ Professor，Department of Mathematics，D．N．College，Meerut，Uttar Pradesh，India．

Corresponding Author：sudhanshu30187＠gmail．com

Abstract

In this paper，authors studied the Diophantine equation $143^{x}+85^{y}=z^{2}$ ，where x, y, z are non－negative integers． Authors proved that $(x, y, z)=(1,0,12)$ is the unique non－negative integer solution of this Diophantine equation．

Key Words：Catalan＇s Conjecture，Equation，Solution．

I．INTRODUCTION

Various problems of Astronomy，Algebra and Trigonometry can be solved by representing them in terms of Diophantine equations［12］．The Diophantine equation $223^{x}+$ $241^{y}=z^{2}$ was studied by Aggarwal et al．［1］．Aggarwal et al． ［2］examined the Diophantine equation $181^{x}+199^{y}=z^{2}$ and proved that this equation has no solution in non－negative integers．Aggarwal and Sharma［3］analyzed the non－linear Diophantine equation $379^{x}+397^{y}=z^{2}$ for non－negative integer solution．The Diophantine equation $193^{x}+211^{y}=z^{2}$ was studied by Aggarwal［4］．Aggarwal and Kumar［5］ examined the exponential Diophantine equation $\left(13^{2 m}\right)+$ $(6 r+1)^{n}=z^{2}$ ．Aggarwal and Upadhyaya［6］studied the Diophantine equation $8^{\alpha}+67^{\beta}=\gamma^{2}$ and proved that this Diophantine equation has a unique solution in non－negative integers．Gupta et al．［7］examined the Diophantine equation $M_{5}{ }^{p}+M_{7}{ }^{q}=r^{2}$ ．Bhatnagar and Aggarwal［8］studied the Diophantine equation $421^{p}+439^{q}=r^{2}$ and proved that this equation has no solution in non－negative integers．

Gupta et al．［9］studied the non－linear exponential Diophantine equation $\left(x^{a}+1\right)^{m}+\left(y^{b}+1\right)^{n}=z^{2}$ ．Gupta et al．［10］ examined non－linear exponential Diophantine equation $x^{\alpha}+$ $(1+m y)^{\beta}=z^{2}$ ．Hoque and Kalita［11］determined the solution of the Diophantine equation $\left(p^{q}-1\right)^{x}+p^{q y}=z^{2}$ ． Kumar et al．［13］proved that the Diophantine equation $601^{p}+$ $619^{q}=r^{2}$ has no solution in the set of non－negative integers． Kumar et al．［14］determined that the Diophantine equation $\left(2^{2 m+1}-1\right)+\left(6^{r+1}+1\right)^{n}=\omega^{2}$ has no non－negative integer solution．Kumar et al．［15］proved that the Diophantine equation $\left(7^{2 m}\right)+(6 r+1)^{n}=z^{2}$ is not solvable in the set of non－negative integers．The Diophantine equation $211^{\alpha}+$ $229^{\beta}=\gamma^{2}$ was studied by Mishra et al．［16］．Sroysang［18－22］ examined the Diophantine equations $323^{x}+325^{y}=z^{2}, 3^{x}+$ $45^{y}=z^{2}, \quad 143^{x}+145^{y}=z^{2}, \quad 3^{x}+85^{y}=z^{2} \quad$ and $4^{x}+$ $10^{y}=z^{2}$ for non－negative integer solution．
The main aim of this paper is to study the Diophantine equation $143^{x}+85^{y}=z^{2}$ ，where x, y, z are non－negative integers，for non－negative integer solution．

II．Preliminaries

PROPOSITION 2．1 Catalan＇s Conjecture［17］：The Diophantine equation $a^{x}-b^{y}=1$ ，where a, b, x and y are integers such that $\min \{a, b, x, y\}>1$ ，has a unique solution $(a, b, x, y)=(3,2,2,3)$ ．
LEMMA 2．2 The Diophantine equation $143^{x}+1=z^{2}$ ，where x, z are non－negative integers，has a unique solution $(x, z)=$ $(1,12)$ ．

INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING，VOL．4，NO．02，FEBRUARY 2023.

PROOF：Suppose that x, z are non－negative integers such that $143^{x}+1=z^{2}$ ．If $x=0$ ，then $z^{2}=2$ which is impossible． Then $x \geq 1$ ．Now $z^{2}=143^{x}+1 \geq 143^{1}+1=144$ ．Thus $z \geq 12$ ．Now，we consider the equation $z^{2}-143^{x}=1$ ．By Proposition 2．1，we have $x=1$ ．It follows that $z^{2}=144$ ． Hence，$z=12$ ．
LEMMA 2．3 The Diophantine equation $85^{y}+1=z^{2}$ ，where y, z are non－negative integers，has no non－negative integer solution．
PROOF：Suppose that y, z are non－negative integers such that $85^{y}+1=z^{2}$ ．If $y=0$ ，then $z^{2}=2$ which is impossible．Then $y \geq 1$ ．Now $z^{2}=85^{y}+1 \geq 85^{1}+1=86$ ．Thus $z \geq 10$ ． Now，we consider the equation $z^{2}-85^{y}=1$ ．By Proposition 2．1，we have $y=1$ ．It follows that $z^{2}=86$ ．This is a contradiction．Hence，the Diophantine equation $85^{y}+1=z^{2}$ ， where y, z are non－negative integers，has no non－negative integer solution．

III．Main Results

THEOREM $3.1(x, y, z)=(1,0,12)$ is the unique non－ negative integer solution of the Diophantine equation $143^{x}+$ $85^{y}=z^{2}$ ，where x, y, z are non－negative integers．
PROOF：Let x, y, z be non－negative integers such that $143^{x}+$ $85^{y}=z^{2}$ ．By Lemma 2．3，we have $x \geq 1$ ．Note that z is even． Then $z^{2} \equiv 0(\bmod 4)$ ．Since $85^{y} \equiv 1(\bmod 4)$ ，it follows that $143^{x} \equiv 3(\bmod 4)$ ．We obtain that x is odd．Now，we will divide the number y into two cases．
CASE $y=0$ ．By Lemma 2．2，we obtain that $x=1$ and $z=12$ ． CASE $y \geq 1$ ．Then $85^{y} \equiv 0(\bmod 5)$ ．Note that $143^{x} \equiv$ $3(\bmod 5)$ or $143^{x} \equiv 2(\bmod 5)$ ．Then $z^{2} \equiv 2(\bmod 5)$ or $z^{2} \equiv 3(\bmod 5)$. In fact，$z^{2} \equiv 0(\bmod 5)$ or $z^{2} \equiv 1(\bmod 5)$ or $z^{2} \equiv 4(\bmod 5)$ ．This is a contradiction．
Hence，$(x, y, z)=(1,0,12)$ is the unique non－negative integer solution of the Diophantine equation $143^{x}+85^{y}=z^{2}$ ，where x, y, z are non－negative integers．
COROLLARY 3．2 The Diophantine equation $143^{x}+85^{y}=$ w^{4} ，where x, y, w are non－negative integers，has no non－ negative integer solution．
PROOF：Let x, y, w be non－negative integers such that $143^{x}+$ $85^{y}=w^{4}$ ．Let $z=w^{2}$ ．Then the equation $143^{x}+85^{y}=w^{4}$ becomes $143^{x}+85^{y}=z^{2}$ ．By Theorem 3．1，we have $(x, y, z)=(1,0,12)$ ．Then $w^{2}=z=12$ ．This is a contradiction．Hence，the Diophantine equation $143^{x}+85^{y}=$ w^{4} ，where x, y, w are non－negative integers，has no non－ negative integer solution．

COROLLARY $3.3(x, y, s)=(1,0,6)$ is the unique non－ negative integer solution of the Diophantine equation $143^{x}+$ $85^{y}=4 s^{2}$ ，where x, y, s are non－negative integers．
PROOF：Let x, y, s be non－negative integers such that $143^{x}+$ $85^{y}=4 s^{2}$ ．Let $z=2 s$ ．Then the equation $143^{x}+85^{y}=4 s^{2}$ becomes $143^{x}+85^{y}=z^{2}$ ．By Theorem 3．1，we have $(x, y, z)=(1,0,12)$ ．Then $2 s=z=12$ ．Thus $s=6$ ．Hence， $(x, y, s)=(1,0,6)$ is the unique non－negative integer solution of the Diophantine equation $143^{x}+85^{y}=4 s^{2}$ ，where x, y, s are non－negative integers．
COROLLARY $3.4(x, y, u)=(1,0,4)$ is the unique non－ negative integer solution of the Diophantine equation $143^{x}+$ $85^{y}=9 u^{2}$ ，where x, y, u are non－negative integers．
PROOF：Let x, y, u be non－negative integers such that $143^{x}+$ $85^{y}=9 u^{2}$ ．Let $z=3 u$ ．Then the equation $143^{x}+85^{y}=9 u^{2}$ becomes $143^{x}+885^{y}=z^{2}$ ．By Theorem 3．1，we have $(x, y, z)=(1,0,12)$ ．Then $3 u=z=12$ ．Thus $u=4$ ．Hence， $(x, y, u)=(1,0,4)$ is the unique non－negative integer solution of the Diophantine equation $143^{x}+85^{y}=9 u^{2}$ ，where x, y, u are non－negative integers．
COROLLARY 3．5 The Diophantine equation $143^{x}+85^{y}=$ $4 v^{4}$ ，where x, y, v are non－negative integers，has no non－ negative integer solution．
PROOF：Let x, y, v be non－negative integers such that $143^{x}+$ $85^{y}=4 v^{4}$ ．Let $z=2 v^{2}$ ．Then the equation $143^{x}+85^{y}=$ $4 v^{4}$ becomes $143^{x}+85^{y}=z^{2}$ ．By Theorem 3．1，we have $(x, y, z)=(1,0,12)$ ．Then $2 v^{2}=z=12$ ．Thus $v^{2}=6$ ．This is a contradiction．Hence，the Diophantine equation $143^{x}+$ $85^{y}=4 v^{4}$ ，where x, y, v are non－negative integers，has no non－negative integer solution．
COROLLARY $3.6(x, y, t)=(1,0,2)$ is the unique non－ negative integer solution of the Diophantine equation $143^{x}+$ $85^{y}=9 t^{4}$ ，where x, y, t are non－negative integers．
PROOF：Let x, y, t be non－negative integers such that $143^{x}+$ $85^{y}=9 t^{4}$ ．Let $z=3 t^{2}$ ．Then the equation $143^{x}+85^{y}=9 t^{4}$ becomes $43^{x}+85^{y}=z^{2}$ ．By Theorem 3．1，we have $(x, y, z)=(1,0,12)$ ．Then $3 t^{2}=z=12$ ．Thus $t=2$ ．Hence， $(x, y, t)=(1,0,2)$ is the unique non－negative integer solution of the Diophantine equation $143^{x}+85^{y}=9 t^{4}$ ，where x, y, t are non－negative integers．

IV．Conclusion

In this paper，authors successfully studied the Diophantine equation $143^{x}+85^{y}=z^{2}$ ，where x, y, z are non－negative integers，and proved that $(x, y, z)=(1,0,12)$ is the unique non－negative integer solution of this Diophantine equation with
the help of Catalan＇s Conjecture．The scheme discussed in this paper can be apply in future to solve other Diophantine equations．

References

［1］．Aggarwal，S．，Sharma，S．D．and Singhal，H．（2020）On the Diophantine equation $223^{x}+241^{y}=z^{2}$ ，International Journal of Research and Innovation in Applied Science， 5 （8），155－156．
［2］．Aggarwal，S．，Sharma，S．D．and Vyas，A．（2020）On the existence of solution of Diophantine equation $181^{x}+$ $199^{y}=z^{2}$ ，International Journal of Latest Technology in Engineering，Management \＆Applied Science， 9 （8），85－86．
［3］．Aggarwal，S．and Sharma，N．（2020）On the non－linear Diophantine equation $379^{x}+397^{y}=z^{2}$ ，Open Journal of Mathematical Sciences，4（1），397－399．
［4］．Aggarwal，S．，On the existence of solution of Diophantine equation $193^{x}+211^{y}=z^{2}$ ，Journal of Advanced Research in Applied Mathematics and Statistics，5（3\＆4），4－5， 2020.
［5］．Aggarwal，S．and Kumar，S．（2021）On the exponential Diophantine equation $\left(13^{2 m}\right)+(6 r+1)^{n}=z^{2}$ ，Journal of Scientific Research，13（3），845－849．
［6］．Aggarwal，S．and Upadhyaya，L．M．（2022）On the Diophantine equation $8^{\alpha}+67^{\beta}=\gamma^{2}$ ，Bulletin of Pure \＆ Applied Sciences－Mathematics and Statistics，41（2），153－ 155.
［7］．Goel，P．，Bhatnagar，K．and Aggarwal，S．（2020）On the exponential Diophantine equation $M_{5}{ }^{p}+M_{7}{ }^{q}=r^{2}$ ， International Journal of Interdisciplinary Global Studies， 14（4），170－171．
［8］．Bhatnagar，K．and Aggarwal，S．（2020）On the exponential Diophantine equation $421^{p}+439^{q}=r^{2}$ ，International Journal of Interdisciplinary Global Studies，14（4），128－129．
［9］．Gupta，D．，Kumar，S．and Aggarwal，S．（2022）Solution of non－linear exponential Diophantine equation $\left(x^{a}+1\right)^{m}+$ $\left(y^{b}+1\right)^{n}=z^{2}$ ，Journal of Emerging Technologies and Innovative Research，9（9），f154－f157．
［10］．Gupta，D．，Kumar，S．and Aggarwal，S．（2022）Solution of non－linear exponential Diophantine equation $x^{\alpha}+(1+$ $m y)^{\beta}=z^{2}$ ，Journal of Emerging Technologies and Innovative Research，9（9），d486－d489．
［11］．Hoque，A．and Kalita，H．（2015）On the Diophantine equation $\left(p^{q}-1\right)^{x}+p^{q y}=z^{2}$ ，Journal of Analysis \＆ Number Theory，3（2），117－119．
［12］．Koshy，T．（2007）Elementary Number Theory with Applications，Second Edition，Academic Press，USA．
［13］．Kumar，A．，Chaudhary，L．and Aggarwal，S．（2020）On the exponential Diophantine equation $601^{p}+619^{q}=r^{2}$ ， International Journal of Interdisciplinary Global Studies， 14（4），29－30．
［14］．Kumar，S．，Bhatnagar，K．，Kumar，A．and Aggarwal，S． （2020）On the exponential Diophantine equation $\left(2^{2 m+1}-\right.$

1）$+\left(6^{r+1}+1\right)^{n}=\omega^{2}$ ，International Journal of Interdisciplinary Global Studies，14（4），183－184．
［15］．Kumar，S．，Bhatnagar，K．，Kumar，N．and Aggarwal，S． （2020）On the exponential Diophantine equation $\left(7^{2 m}\right)+$ $(6 r+1)^{n}=z^{2}$ ，International Journal of Interdisciplinary Global Studies，14（4），181－182．
［16］．Mishra，R．，Aggarwal，S．And Kumar，A．（2020）On the existence of solution of Diophantine equation $211^{\alpha}+$ $229^{\beta}=\gamma^{2}$ ，International Journal of Interdisciplinary Global Studies，14（4），78－79．
［17］．School of，R．（2008）Catalan＇s conjecture，Springer－Verlag， London．
［18］．Sroysang，B．（2014）On the Diophantine equation $323^{x}+$ $325^{y}=z^{2}$ ，International Journal of Pure and Applied Mathematics，91（3），395－398．
［19］．Sroysang，B．（2014）On the Diophantine equation $3^{x}+$ $45^{y}=z^{2}$ ，International Journal of Pure and Applied Mathematics，91（2），269－272．
［20］．Sroysang，B．（2014）On the Diophantine equation $143^{x}+$ $145^{y}=z^{2}$ ，International Journal of Pure and Applied Mathematics，91（2），265－268．
［21］．Sroysang，B．（2014）On the Diophantine equation $3^{x}+$ $85^{y}=z^{2}$ ，International Journal of Pure and Applied Mathematics，91（1），131－134．
［22］．Sroysang，B．（2014）More on the Diophantine equation $4^{x}+$ $10^{y}=z^{2}$ ，International Journal of Pure and Applied Mathematics，91（1），135－138．

