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Abstract: - In this paper, authors studied the Diophantine equation 143𝑥𝑥 + 85𝑦𝑦 = 𝑧𝑧2, where 𝑥𝑥,𝑦𝑦, 𝑧𝑧 are non-negative integers. 
Authors proved that (𝑥𝑥,𝑦𝑦, 𝑧𝑧) = (1, 0, 12) is the unique non-negative integer solution of this Diophantine equation. 
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I. INTRODUCTION 

Various problems of Astronomy, Algebra and 
Trigonometry can be solved by representing them in terms of 
Diophantine equations [12]. The Diophantine equation 223𝑥𝑥 +
241𝑦𝑦 = 𝑧𝑧2 was studied by Aggarwal et al. [1]. Aggarwal et al. 
[2] examined the Diophantine equation 181𝑥𝑥 + 199𝑦𝑦 = 𝑧𝑧2 and 
proved that this equation has no solution in non-negative 
integers. Aggarwal and Sharma [3] analyzed the non-linear 
Diophantine equation 379𝑥𝑥 + 397𝑦𝑦 = 𝑧𝑧2 for non-negative 
integer solution. The Diophantine equation 193𝑥𝑥 + 211𝑦𝑦 = 𝑧𝑧2 
was studied by Aggarwal [4]. Aggarwal and Kumar [5] 
examined the exponential Diophantine equation (132𝑚𝑚) +
(6𝑟𝑟 + 1)𝑛𝑛 = 𝑧𝑧2. Aggarwal and Upadhyaya [6] studied the 
Diophantine equation 8𝛼𝛼 + 67𝛽𝛽 = 𝛾𝛾2 and proved that this 
Diophantine equation has a unique solution in non-negative 
integers. Gupta et al. [7] examined the Diophantine equation 
𝑀𝑀5

𝑝𝑝 + 𝑀𝑀7
𝑞𝑞 = 𝑟𝑟2. Bhatnagar and Aggarwal [8] studied the 

Diophantine equation 421𝑝𝑝 + 439𝑞𝑞 = 𝑟𝑟2 and proved that this 
equation has no solution in non-negative integers. 
 

 
 
 
 
 
 
 

 

 Gupta et al. [9] studied the non-linear exponential Diophantine 
equation (𝑥𝑥𝑎𝑎 + 1)𝑚𝑚 + (𝑦𝑦𝑏𝑏 + 1)𝑛𝑛 = 𝑧𝑧2. Gupta et al. [10] 
examined non-linear exponential Diophantine equation 𝑥𝑥𝛼𝛼 +
(1 + 𝑚𝑚𝑚𝑚)𝛽𝛽 = 𝑧𝑧2. Hoque and Kalita [11] determined the 
solution of the Diophantine equation (𝑝𝑝𝑞𝑞 − 1)𝑥𝑥 + 𝑝𝑝𝑞𝑞𝑞𝑞 = 𝑧𝑧2. 
Kumar et al. [13] proved that the Diophantine equation 601𝑝𝑝 +
619𝑞𝑞 = 𝑟𝑟2 has no solution in the set of non-negative integers. 
Kumar et al. [14] determined that the Diophantine equation 
(22𝑚𝑚+1 − 1) + (6𝑟𝑟+1 + 1)𝑛𝑛 = 𝜔𝜔2 has no non-negative integer 
solution. Kumar et al. [15] proved that the Diophantine 
equation (72𝑚𝑚) + (6𝑟𝑟 + 1)𝑛𝑛 = 𝑧𝑧2 is not solvable in the set of 
non-negative integers. The Diophantine equation 211𝛼𝛼 +
229𝛽𝛽 = 𝛾𝛾2 was studied by Mishra et al. [16]. Sroysang [18-22] 
examined the Diophantine equations 323𝑥𝑥 + 325𝑦𝑦 = 𝑧𝑧2, 3𝑥𝑥 +
45𝑦𝑦 = 𝑧𝑧2, 143𝑥𝑥 + 145𝑦𝑦 = 𝑧𝑧2, 3𝑥𝑥 + 85𝑦𝑦 = 𝑧𝑧2 and 4𝑥𝑥 +
10𝑦𝑦 = 𝑧𝑧2 for non-negative integer solution.  
The main aim of this paper is to study the Diophantine equation 
143𝑥𝑥 + 85𝑦𝑦 = 𝑧𝑧2, where 𝑥𝑥,𝑦𝑦, 𝑧𝑧 are non-negative integers, for 
non-negative integer solution. 

II. PRELIMINARIES 

PROPOSITION 2.1 Catalan’s Conjecture [17]: The 
Diophantine equation 𝑎𝑎𝑥𝑥 − 𝑏𝑏𝑦𝑦 = 1, where 𝑎𝑎, 𝑏𝑏, 𝑥𝑥 and 𝑦𝑦 are 
integers such that min{𝑎𝑎, 𝑏𝑏, 𝑥𝑥,𝑦𝑦} > 1, has a unique solution 
(𝑎𝑎, 𝑏𝑏, 𝑥𝑥,𝑦𝑦) = (3, 2, 2, 3). 
LEMMA 2.2 The Diophantine equation 143𝑥𝑥 + 1 = 𝑧𝑧2, where 
𝑥𝑥, 𝑧𝑧 are non-negative integers, has a unique solution (𝑥𝑥, 𝑧𝑧) =
(1,12). 
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PROOF: Suppose that 𝑥𝑥, 𝑧𝑧 are non-negative integers such that 
143𝑥𝑥 + 1 = 𝑧𝑧2. If 𝑥𝑥 = 0, then 𝑧𝑧2 = 2 which is impossible. 
Then 𝑥𝑥 ≥ 1. Now 𝑧𝑧2 = 143𝑥𝑥 + 1 ≥ 1431 + 1 = 144. Thus 
𝑧𝑧 ≥ 12. Now, we consider the equation 𝑧𝑧2 − 143𝑥𝑥 = 1. By 
Proposition 2.1, we have 𝑥𝑥 = 1. It follows that 𝑧𝑧2 = 144. 
Hence, 𝑧𝑧 = 12. 
LEMMA 2.3 The Diophantine equation 85𝑦𝑦 + 1 = 𝑧𝑧2, where 
𝑦𝑦, 𝑧𝑧 are non-negative integers, has no non-negative integer 
solution. 
PROOF: Suppose that 𝑦𝑦, 𝑧𝑧 are non-negative integers such that 
85𝑦𝑦 + 1 = 𝑧𝑧2. If 𝑦𝑦 = 0, then 𝑧𝑧2 = 2 which is impossible. Then 
𝑦𝑦 ≥ 1. Now 𝑧𝑧2 = 85𝑦𝑦 + 1 ≥ 851 + 1 = 86. Thus 𝑧𝑧 ≥ 10. 
Now, we consider the equation 𝑧𝑧2 − 85𝑦𝑦 = 1. By Proposition 
2.1, we have 𝑦𝑦 = 1. It follows that 𝑧𝑧2 = 86. This is a 
contradiction. Hence, the Diophantine equation 85𝑦𝑦 + 1 = 𝑧𝑧2, 
where 𝑦𝑦, 𝑧𝑧 are non-negative integers, has no non-negative 
integer solution. 

III. MAIN RESULTS 

THEOREM 3.1 (𝑥𝑥,𝑦𝑦, 𝑧𝑧) = (1, 0, 12) is the unique non-
negative integer solution of the Diophantine equation 143𝑥𝑥 +
85𝑦𝑦 = 𝑧𝑧2, where 𝑥𝑥,𝑦𝑦, 𝑧𝑧 are non-negative integers. 
PROOF: Let 𝑥𝑥,𝑦𝑦, 𝑧𝑧 be non-negative integers such that 143𝑥𝑥 +
85𝑦𝑦 = 𝑧𝑧2. By Lemma 2.3, we have 𝑥𝑥 ≥ 1. Note that 𝑧𝑧 is even. 
Then 𝑧𝑧2 ≡ 0(𝑚𝑚𝑚𝑚𝑚𝑚 4). Since 85𝑦𝑦 ≡ 1(𝑚𝑚𝑚𝑚𝑚𝑚 4), it follows that 
143𝑥𝑥 ≡ 3(𝑚𝑚𝑚𝑚𝑚𝑚 4). We obtain that 𝑥𝑥 is odd. Now, we will 
divide the number 𝑦𝑦 into two cases. 
CASE 𝑦𝑦 = 0. By Lemma 2.2, we obtain that 𝑥𝑥 = 1 and 𝑧𝑧 = 12. 
CASE 𝑦𝑦 ≥ 1. Then 85𝑦𝑦 ≡ 0(𝑚𝑚𝑚𝑚𝑚𝑚 5). Note that 143𝑥𝑥 ≡
3(𝑚𝑚𝑚𝑚𝑚𝑚 5) or 143𝑥𝑥 ≡ 2(𝑚𝑚𝑚𝑚𝑚𝑚 5). Then 𝑧𝑧2 ≡ 2(𝑚𝑚𝑚𝑚𝑚𝑚 5) or 
𝑧𝑧2 ≡ 3(𝑚𝑚𝑚𝑚𝑚𝑚 5). In fact, 𝑧𝑧2 ≡ 0(𝑚𝑚𝑚𝑚𝑚𝑚 5) or 𝑧𝑧2 ≡ 1(𝑚𝑚𝑚𝑚𝑚𝑚 5) or 
𝑧𝑧2 ≡ 4(𝑚𝑚𝑚𝑚𝑚𝑚 5). This is a contradiction.  
Hence, (𝑥𝑥,𝑦𝑦, 𝑧𝑧) = (1, 0, 12) is the unique non-negative integer 
solution of the Diophantine equation 143𝑥𝑥 + 85𝑦𝑦 = 𝑧𝑧2, where 
𝑥𝑥,𝑦𝑦, 𝑧𝑧 are non-negative integers. 
COROLLARY 3.2 The Diophantine equation 143𝑥𝑥 + 85𝑦𝑦 =
𝑤𝑤4, where 𝑥𝑥,𝑦𝑦,𝑤𝑤 are non-negative integers, has no non-
negative integer solution. 
PROOF: Let 𝑥𝑥,𝑦𝑦,𝑤𝑤 be non-negative integers such that 143𝑥𝑥 +
85𝑦𝑦 = 𝑤𝑤4. Let 𝑧𝑧 = 𝑤𝑤2. Then the equation 143𝑥𝑥 + 85𝑦𝑦 = 𝑤𝑤4 
becomes 143𝑥𝑥 + 85𝑦𝑦 = 𝑧𝑧2. By Theorem 3.1, we have 
(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = (1, 0, 12). Then 𝑤𝑤2 = 𝑧𝑧 = 12. This is a 
contradiction. Hence, the Diophantine equation 143𝑥𝑥 + 85𝑦𝑦 =
𝑤𝑤4, where 𝑥𝑥,𝑦𝑦,𝑤𝑤 are non-negative integers, has no non-
negative integer solution. 

COROLLARY 3.3 (𝑥𝑥,𝑦𝑦, 𝑠𝑠) = (1, 0, 6) is the unique non-
negative integer solution of the Diophantine equation 143𝑥𝑥 +
85𝑦𝑦 = 4𝑠𝑠2, where 𝑥𝑥,𝑦𝑦, 𝑠𝑠 are non-negative integers. 
PROOF: Let 𝑥𝑥,𝑦𝑦, 𝑠𝑠 be non-negative integers such that 143𝑥𝑥 +
85𝑦𝑦 = 4𝑠𝑠2. Let 𝑧𝑧 = 2𝑠𝑠. Then the equation 143𝑥𝑥 + 85𝑦𝑦 = 4𝑠𝑠2 
becomes 143𝑥𝑥 + 85𝑦𝑦 = 𝑧𝑧2. By Theorem 3.1, we have 
(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = (1, 0, 12). Then 2𝑠𝑠 = 𝑧𝑧 = 12. Thus 𝑠𝑠 = 6. Hence, 
(𝑥𝑥,𝑦𝑦, 𝑠𝑠) = (1, 0, 6) is the unique non-negative integer solution 
of the Diophantine equation 143𝑥𝑥 + 85𝑦𝑦 = 4𝑠𝑠2, where 𝑥𝑥,𝑦𝑦, 𝑠𝑠 
are non-negative integers. 
COROLLARY 3.4 (𝑥𝑥,𝑦𝑦,𝑢𝑢) = (1, 0, 4) is the unique non-
negative integer solution of the Diophantine equation 143𝑥𝑥 +
85𝑦𝑦 = 9𝑢𝑢2, where 𝑥𝑥,𝑦𝑦,𝑢𝑢 are non-negative integers. 
PROOF: Let 𝑥𝑥,𝑦𝑦,𝑢𝑢 be non-negative integers such that 143𝑥𝑥 +
85𝑦𝑦 = 9𝑢𝑢2. Let 𝑧𝑧 = 3𝑢𝑢. Then the equation 143𝑥𝑥 + 85𝑦𝑦 = 9𝑢𝑢2 
becomes 143𝑥𝑥 + 885𝑦𝑦 = 𝑧𝑧2. By Theorem 3.1, we have 
(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = (1, 0, 12). Then 3𝑢𝑢 = 𝑧𝑧 = 12. Thus 𝑢𝑢 = 4. Hence, 
(𝑥𝑥,𝑦𝑦,𝑢𝑢) = (1, 0, 4) is the unique non-negative integer solution 
of the Diophantine equation 143𝑥𝑥 + 85𝑦𝑦 = 9𝑢𝑢2, where 𝑥𝑥,𝑦𝑦,𝑢𝑢 
are non-negative integers. 
COROLLARY 3.5 The Diophantine equation 143𝑥𝑥 + 85𝑦𝑦 =
4𝑣𝑣4, where 𝑥𝑥,𝑦𝑦, 𝑣𝑣 are non-negative integers, has no non-
negative integer solution. 
 PROOF: Let 𝑥𝑥,𝑦𝑦, 𝑣𝑣 be non-negative integers such that 143𝑥𝑥 +
85𝑦𝑦 = 4𝑣𝑣4. Let 𝑧𝑧 = 2𝑣𝑣2. Then the equation 143𝑥𝑥 + 85𝑦𝑦 =
4𝑣𝑣4 becomes 143𝑥𝑥 + 85𝑦𝑦 = 𝑧𝑧2. By Theorem 3.1, we have 
(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = (1, 0, 12). Then 2𝑣𝑣2 = 𝑧𝑧 = 12. Thus 𝑣𝑣2 = 6. This 
is a contradiction. Hence, the Diophantine equation 143𝑥𝑥 +
85𝑦𝑦 = 4𝑣𝑣4, where 𝑥𝑥,𝑦𝑦, 𝑣𝑣 are non-negative integers, has no 
non-negative integer solution. 
COROLLARY 3.6 (𝑥𝑥,𝑦𝑦, 𝑡𝑡) = (1, 0, 2) is the unique non-
negative integer solution of the Diophantine equation 143𝑥𝑥 +
85𝑦𝑦 = 9𝑡𝑡4, where 𝑥𝑥,𝑦𝑦, 𝑡𝑡 are non-negative integers. 
PROOF: Let 𝑥𝑥,𝑦𝑦, 𝑡𝑡 be non-negative integers such that 143𝑥𝑥 +
85𝑦𝑦 = 9𝑡𝑡4. Let 𝑧𝑧 = 3𝑡𝑡2. Then the equation 143𝑥𝑥 + 85𝑦𝑦 = 9𝑡𝑡4 
becomes 43𝑥𝑥 + 85𝑦𝑦 = 𝑧𝑧2. By Theorem 3.1, we have 
(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = (1, 0, 12). Then 3𝑡𝑡2 = 𝑧𝑧 = 12. Thus 𝑡𝑡 = 2. Hence, 
(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = (1, 0, 2) is the unique non-negative integer solution 
of the Diophantine equation 143𝑥𝑥 + 85𝑦𝑦 = 9𝑡𝑡4, where 𝑥𝑥,𝑦𝑦, 𝑡𝑡 
are non-negative integers. 

IV. CONCLUSION 

In this paper, authors successfully studied the Diophantine 
equation 143𝑥𝑥 + 85𝑦𝑦 = 𝑧𝑧2, where 𝑥𝑥,𝑦𝑦, 𝑧𝑧 are non-negative 
integers, and proved that (𝑥𝑥,𝑦𝑦, 𝑧𝑧) = (1, 0, 12) is the unique 
non-negative integer solution of this Diophantine equation with 
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the help of Catalan’s Conjecture. The scheme discussed in this 
paper can be apply in future to solve other Diophantine 
equations. 
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