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Abstract: - Malware detection is becoming more important task as we face more data on the Internet. Web users are vulnerable to 
non-executable files such as Word files and Hangul Word Processor files because they usually open such files without paying 
attention. As new infected non-executables keep appearing, deep- learning models are drawing attention because they are known to 
be effective and have better generalization power. Especially, the deep-learning models have been used to learn arbitrary patterns 
from byte streams, and they exhibited successful performance on malware detection task. Although there have been malware 
detection studies using the deep-learning models, they commonly aimed at a single file format and did not take using different 
formats into consideration. In this paper, we assume that different file formats may contribute to each other, and deep-learning 
models will have a better chance to learn more promising patterns for better performance. We demonstrate that this assumption is 
possible by experimental results with our annotated datasets of two different file formats (e.g., Portable Document Format (PDF) 
and Hangul Word Processor (HWP)). 
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I. INTRODUCTION 

Malware detection is an important task as more data transfers 
on the Internet. Malware has been used to attack individuals, 
companies, or institutions. It may just simply remove or encrypt 
files of the victims, or utilize the victims as weapons (e.g., 
zombie hosts) to attack ultimate targets.  
 
 

 
 
 
 
 
 
 

 
As described in [1], the target files of attackers might be 
classified into two categories: non-executables (e.g., Portable 

Document Format (PDF) files) and executables (e.g., EXE 
files). The victims are more vulnerable to non-executables such 
as PDF and Microsoft Word files because they usually open 
such files without paying much attention. Therefore, it is 
becoming more important to automatically assess how 
malicious the files without opening them. 
There are mainly two ways of malware detection: static analysis 
and dynamic analysis. The dynamic analysis detects malicious 
actions by looking at all of the step-by-step actions conducted 
in an isolated virtual environment (e.g., virtual box), whereas 
the static analysis finds clues of malicious actions by examining 
the files without running them. The dynamic analysis has a non-
preferred side that different studies use different non-public 
emulation environments, meaning that they are usually not 
reproducible. Recently, there were few studies that analyzes 
byte streams or sequences within non-executables in the static 
manner [1]–[3]. The motivation of these studies is that the data-
driven models, especially deep learning models, automatically 
find arbitrary patterns (e.g., relation between bytes) beneath the 
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byte streams, so the trained models will probably be more 
robust to future variants. These studies, however, have 
particular target formats (e.g., PDF), and did not consider 
utilizing byte streams of different formats at the same time. 
 In this paper, we assume that byte streams of different non- 
executable formats complement each other, so we may expect 
performance improvements if deep learning (DL). 
models learn from them. Specifically, we investigate two 
different non-executable formats (e.g., PDF and Hangul Word 
Processor (HWP)), and explain a motivation of using the two 
different formats for malware detection. We demonstrate the 
benefit of it by experimental results of malware detection using 
our annotated datasets. As far as we know, this is the first study 
that shows possibility of using different non-executable formats 
for performance improvements on malware detection task. We 
also examine the impact of data size and analyze some cases 
that might be related to our experimental results. 

II. RELATED WORKS 

  Malware detection is basically a binary classification task; we 
need to predict a label (e.g., benign, malware) of a given input 
(e.g., features extracted from files, byte stream). There have 
been many studies of data-driven approach to tackle the 
malware detection task in the static manner. The most widely-
used machine-learning (ML) models are support vector 
machines (SVM) [4], logistic regression (LR), decision trees, 
Naive bayes, ensemble models (e.g., random forest (RF) [5], 
and extreme gradient boost (XGB) [6]). For example, the RF 
achieved about 89% and 96% of F1 scores on portable 
executable (PE) files and Opcode sequences, respectively [7]. 
Another study of [8] showed that the SVM learned arbitrary 
patterns from a frequency histogram obtained from executables 
and achieved 95% of true positive rate (TPR). The XGB was 
employed to predict potential malicious actions within the byte 
sequences of PE files [9], and achieved about 98% accuracy on 
the dataset of [10]. A variant of gradient boosting model using 
mutual information and feature importance was applied to byte 
n-grams [11], and the proposed model had F1 scores of98 99% 
for Android malware detection. Although these studies have 
shown successful performance, they have a common limitation 
that they require much effort of experts to feature engineering; 
so it requires extensive feature engineering for every newly 
appearing malware. 
Deep-learning (DL) models are drawing much attention, and 
they are known to be a solution for the limitation of the 
traditional ML models because they are capable of capturing 
latent features automatically. The DL models are multi-layered 

perceptron (MLP) with a deep structure (i.e., many hidden 
layers), and the deep-learning technique is essentially a part of 
the machine-learning technique. As deeper structure is known 
to have a big power to discover patterns from data, there have 
been many studies that proposed different techniques (e.g., 
residual connection [12], batch normalization [13], drop-out 
[14]) for allowing the model to have more hidden layers without 
suffering from the problem of vanishing (or exploding) 
gradient. Other than the standard structure of MLP model, there 
are several well- known types of DL models such as recurrent 
neural networks (RNN) [15], convolutional neural networks 
(CNN) [16], attention-based models [17], and graph neural 
networks (GNN) [18]; of course, there are many studies that 
designed   hybrid models consisting of two or more types. 
There are few studies that utilized the power of the DL models 
for malware detection by analyzing byte streams, and CNN-
based models are drawing attention because of its efficiency 
(e.g., speed) without losing much effectiveness (e.g., accuracy). 
The byte stream is a sequence of bytes, and every file is 
basically a byte stream. There is only a difference in the way of 
interpreting the information stored in the file depending on the 
file format. For example, a text file consists of a set of human-
readable strings. However, in the end, since only bits such as 0 
and 1 are stored in the computer memory, a byte stream can be 
extracted from all files in byte units. 
A part of byte stream is also a byte stream, and some previous 
studies assumed that byte streams having malicious actions 
within files might have particular patterns that can be used for 
malware detection. For example, Raff et al. [3] designed a 
shallow structure using convolutional layers that analyze byte 
streams of portable executable (PE) headers. Their shallow 
architecture takes a byte stream of 1-2M length as an input, and 
achieved about 94% accuracy. Note that they used the byte 
stream as an input for the model without employing any other 
hand-crafted features. Another architecture using consecutive 
convolutional layers was designed for analyzing byte streams 
of PDF files [2], one of the most widely-used non-executables, 
and it achieved 98% of F1 score. Je Ong et al. proposed a CNN 
model using spatial pyramid structure to grasp the underlying 
patterns of Hangul word processor (HWP) files that is a well-
known non-executable in South Korea [1], where new malware 
attacks via the HWP files keep appearing due to the 
circumstance between the South and North Korea. Although 
these existing studies achieved successful performance, they 
commonly focused on a single file format (e.g., PDF). In this 
paper, we investigate to use data of multiple formats, and 
demonstrate it by experimental results of malware detection 
task. 
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This paper aims at solving the malware detection task that is 
basically a binary classification; we want to develop a model 
that predicts a label (malware or benign) of a given byte stream 
of a non-executable. The overview of our method is depicted in 
Fig. 1. We basically utilize byte streams of multiple file formats 
for training a classification model for a specific file format. 
 
2.1 Malware Detection Using Byte Streams of Multiple 

Formats 
Assuming that we have a target file format ft of the malware 
detection task, and we have training datasets DF for a certain 
list of file formats F = {f1, f2, . . . , f|F|} including the target format 
ft as well as a test dataset D. Note that the training datasets cover 
all file formats, whereas the test dataset is only for the target 
format, as shown in Fig. 1. 
 

 
Fig.1. Overview of the proposed method 

 
When the malware detection model Mft is trained in a 
supervised manner for the target format, the model is trained 
not only with D ft train but also with all other datasets D F train. 
If we want to have a separated validation set D ft val out of the 
training datasets, the validation set should be sampled from D 
ft train but not from other datasets in order to make the 
validation set to have similar characteristics to the test set. 
There is a learning concept, multi-task learning (MTL), that 
allows a model to learn and solve two or more tasks at the same 
time. The motivation behind the MTL concept is that the model 
may learn better through the relationship between multiple 
tasks. The MTL is different from transfer learning; the MTL 
aims at solving all the tasks at the same time whereas the 
transfer learning exploits a source task to solve a target task. 
The MTL is mostly implemented by parameter sharing that 
allows the parameters are trained for two or more different tasks 
at the same time. There are two parameter sharing ways of the 
MTL concept: soft sharing and hard sharing. Most previous 
work of MTL concept adopts the hard sharing; it has a single 
model that has parameters shared across different tasks. The 
soft sharing way assumes that there are task-specific models 
that share their parameters. These ways are somewhat related 
to our proposed method, but they are different because the MTL 

concept assumes that the model takes the same or similar input 
for solving multiple tasks closely related to each other. For 
example, [19] applied the MTL concept for malware detection 
and malware classification tasks, and their model takes the 
same shape of sparse binary input vector for solving the tasks; 
that is, it assumes that we want to solve the two tasks at the 
same time for a given input. Similarly in [20], their model takes 
the same input sequence of API calls for solving malware 
classification and file access pattern generation task. On the 
other hand, we aim at malware detection task for a specific file 
format because we will not want to have to run the model on 
two or more file formats every time. We assume that byte 
streams of multiple different file formats may complement to 
each other, and propose a way of utilizing the byte streams of 
different file formats for training malware detection model. 
Even though our method is generally applicable to any set of 
file formats, we focused two non-executables, PDF and HWP, 
in this paper; the number of file formats |F| = 2. There are two 
reasons for this. First, the PDF is one of the most widely-used 
file formats in the world as reported in [21], so we chose the 
PDF as it seems to contain more diverse malicious patterns than 
other formats. Second, because of the special situation between 
South Korea and North Korea, North Korea continuously 
cyber-attack South Korea, and malicious code attacks on HWP 
files is increasing. As the HWP files are widely used by South 
Korean governments and institutions, it becomes important to 
develop a robust malware detection model for HWP files. 
We use and compare two recently designed CNN models for 
measuring our method: MalConv [3] and SPAPConv [1]. The 
MalConv has a shallow and wide architecture using a gate 
mechanism, and the SPAPConv enhanced embedding 
representation by employing spatial pyramid average pooling. 
These models commonly adopt an embedding layer because 
each byte token is not numerical but a categorical value; the 
embedding layer generates a distributed representation (i.e., 
real-numbered vector) from a given byte token. Although these 
CNN models are known to be able to capture arbitrary features 
automatically without feature engineering, it is still important 
to study data characteristics for better model design and 
parameter engineering. The byte streams of the PDF and HWP 
files have different lengths on average. As reported in [22], the 
PDF byte streams are normally 1,000 bytes long, whereas the 
HWP byte streams often have millions of bytes. Following the 
previous studies [1], [22], we set the input length I pdf of the 
PDF-specific detection model Mpdf to be 1,000, and the input 
length of the HWP-specific detection model I hwp is 100,000. 
To manage the huge gap of input length between the two 
models, we compare two different padding strategies: post 
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padding and stretch padding [1]. The post padding is widely 
used in many previous studies, whereas the stretch padding is 
to spread the element values of the stream evenly and make it a 
longer stream. Specifically, the PDF streams are much shorter 
than the HWP streams, so just padding the back of the PDF 
stream may degrade the performance of CNN model because 
many convolutional operations run-on byte sequences made of 
only padding tokens. On the other hand, the stretch padding has 
a potential to alleviate this problem as it allows the 
convolutional operations run on the evenly spread byte tokens; 
more details of the stretch padding can be found in [1]. 
 
2.2 Byte Streams of HWP and Pdf Formats 
The purpose of malware includes stealing industrial secrets 
from infrastructure, collecting personal information, and 
making money demands using ransomware. In the past, PE files 
were mainly used to achieve this purpose, but 
 

 
 

Fig.2. Malicious and benign byte streams within files. 
 
recently, attacks using document files are increasing. This 
attack exploits vulnerabilities and functions provided by 
programs that read and edit document files. Hangul word 
processor (HWP) provides JavaScript and Visual Basic For 
Application (VBA) macro functions, and Encapulated 
PostScript (EPS) files for high-quality pictures can be inserted 
into documents. Especially, the JavaScript language is often 
used as a means to make writing interactive web pages easier, 
and PDFs uses the JavaScript to format data, calculate data, 
validate data, or specify actions. For this reason, even if the 
document format is different, when the program supports the 
same language, such as JavaScript, it can be helpful to use a 
part of a specific document-type malware for deep learning 
training in a different document format. In addition, attackers 
are always devising new attack methods to circumvent existing 
detection rules; for example, as one of the ideas, attackers try to 
apply malicious code of a different file format to create a new 

malicious code that operates on the target file. In many cases, 
other vulnerabilities for different document types do not work 
properly in a specific document type, but the potential for 
malware execution still exists. For example, CVE-2014-1761 
utilizes a vulnerability in Rich Text Format (RTF), which has 
been included in the Pretexts stream in HWP. As another 
example, CVE-2017-11882 uses a vulnerability in Microsoft 
Office Word. Since the purpose of the malicious behaviour is 
the same, it may be advantageous to use a document-type 
malware sample in a different format for deep learning training 
of the target document. 

III. EXPERIMENT 

3.1 Data and Environment 
We got 1,856 HWP files and 12,367 PDF files from anti-virus 
company, and its statistics are summarized in Table 1, where 
every malware file has at least one malicious byte stream; for 
example, as shown in Fig. 2, there are two malicious streams 
and one benign stream in the sample file, so this sample is a 
malware file as it contains malicious streams. The byte streams 
are extracted from the files using the algorithm of [22]. The per-
stream annotation was performed by using malware detection 
tools and manual confirmation by human. 
Table.1. Number of data files 
 

 
 
Table.2. Number of byte streams 

 
 
experts. Table 2 summarizes the statistics of byte streams. Note 
that, for each target, byte streams of the two formats are used to 
train the corresponding model. For example, when we train 
Mpdf , the byte streams of PDF and HWP are used for training,  
where the HWP byte streams are only for training; in this case, 
the HWP byte streams for Mpdf are sampled from the set of all 
HWP files while we kept its label ratio as similar as possible to 
the label ratio of PDF files. 
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We adopted two recent malware detection models for 
experiments: MalConv and SPAPConv. The SPAPConv was 
implemented exactly same as in [1], and MalConv was 
implemented as done in [3] but with 2-dimensional convolution 
instead of 1-dimensional convolution. This modification is 
borrowing the idea of SPAPConv, and it exhibited performance 
improvements (e.g., 4-5% of accuracy). The input length of 
PDF byte streams was 1K, and the input length of HWP byte 
streams was 100K. We used a machine having Intel(R) Core 
(TM) i9-10900X CPU@3.70GHz and two graphics processing 
unit (GPU) of GeForce RTX 3090. The models were 
implemented using Python3 language with TensorFlow 
packages. 

IV. METHODOLOGY 

4.1 Results 
We independently conducted experiments for different target 
formats (e.g., PDF, HWP). For each target format, we 
performed three experiments and averaged per-class precision, 
recall, and F1 scores. Following the training recipe of 
SPAPConv [1], we applied batch normalization [13] for the 
convolutional layer and drop-out technique [14] for the 
fullyconnected layer. For MalConv, we also took the drop-out 
technique for the fully-connected layer as done in [3]. For both 
models, we adopted the cost function of cross-entropy and 
Adam optimizer [23] with initial learning rate 0.001. The label 
ratio is skewed as shown in Table 2, so we employed the cost-
sensitive learning technique. With the validation dataset, we got 
the proper number of epochs (e.g., 5-10 epochs) by a grid 
searching. 
The per-class performance of HWP malware detection is 
described in Table 3, where HWP+PDF indicates that 
 
Table.3. Malware detection performance on HWP byte streams, where 
P, R, and F1 represent precision, recall, and F1 score (%), respectively. 
 

 
 
 
 
Table.4. Malware detection performance on PDF byte streams, where 
P, R, and F1 represent precision, recall, and F1 score (%), respectively. 

 
 
the model is trained using HWP and PDF byte streams together, 
and stretch and post represent the stretch padding and the 
conventional post padding, respectively. As the PDF byte 
streams are relatively shorter than the HWP byte streams in 
length, the PDF byte streams are mostly padded in either of the 
two padding ways. Interestingly, with MalConv, training with 
both byte streams together exhibits performance 
improvements; especially, precision of malware case was 
dramatically improved. In terms of the F1 score, using the two-
byte streams (i.e., HWP+PDF) was superior to using only HWP 
byte streams. The best F1 score was achieved when we use the 
stretch padding, and this is consistent with the results of [1]. On 
the other hand, with SPAPConv, we did not observe any 
performance improvement. Fig. 3 shows the per-class receiver 
operating characteristic (ROC) curves of MalConv and 
SPAPConv, where the padding way is chosen based on their 
recall values. The SPAPConv exhibits smooth curves, and it 
might be preferable if we want a detection model with smaller 
false negative rates. 
Table 4 summarizes the per-class performance of PDF malware 
detection. As the HWP byte streams are much longer than the 
PDF byte streams, we got samples of 1000-bytes from the HWP 
byte streams so the PDF+HWP byte streams have the same 
length. As shown in this table, we observed that the MalConv 
has shown the performance improvement but it was not that 
much, whereas the SPAPConv does not exhibit any 
improvement. This result is similar to the HWP malware 
detection result of Table 3, and this might be related to two 
factors as follows. The first factor is the model size. The 
number of parameters of MalConv and SPAPConv are 1M and 
70K, respectively, therefore the SPAPConv might not have 
enough power to encode the underlying patterns of different file 
formats. The second factor is the model architectrue, especially  
what representation it takes for convolutional operations. The 
MalConv feeds the conventional embedding representations to 
the convolutional operations, whereas the convolutional layer 
of SPAPConv takes as input the result of 1-level spatial 
pyramid average pooling (SPAP) layer.  
 
The SPAP layer extracts a representative value for each region 
of an arbitrary size that allows it to yield an output of a fixed 
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size; that is, long streams will be roughly looked at whereas 
short streams are closely looked at. 
 

 

 
Fig.3. Receiver Operating Characteristic (Roc) Curves Of (Up) 
Malconv with Stretch Padding And (Down) Spapconv with Post 

Padding, Where Area Indicates Area Under the Curve (Auc) Score. 
 

Since the difference in length between the PDF and HWP byte 
streams is large, the SPAP layer might act like a telescope for 
two objects with a huge difference in distance, so it eventually 
confused the entire model. 

V. DISCUSSION 

By experimental results, we observed that using byte streams of 
different formats helps to increase performance of malware 
detection. One may ask how much impact the number of 
different formats have (e.g., 50% of PDF byte streams for HWP 
malware detection). Table 5 shows the results of HWP. 
 
Table.5. Malware detection performance on HWP byte streams with 
different amount of PDF byte streams with the stretch padding for 

training, where P, R, and F1 represent precision, recall, and F1 score 
(%), respectively. 

 
 
malware detection, where HWP+PDF (50%) indicates that we 
used HWP training data and only a half of the PDF byte streams 
with the stretch padding to train the model. The half of PDF 
byte streams was randomly sampled from the PDF byte streams 
used for HWP+PDF (stretch) of Table 3. The performance of 
HWP+PDF (50%) was about halfway between HWP+PDF 
(stretch) and HWP only, so it can be seen that the performance 
increased in proportion to the amount of the PDF byte streams. 
Based on this result, we can say that the reason for small 
improvements of MalConv in Table 4 is that the amount of 
HWP byte streams was relatively much smaller than that of the 
PDF byte streams. We also tried to feed only PDF byte streams 
to the HWP malware detection model, and its performance is 
very low as shown as PDF (100%) in the Table 5. We may 
conclude from this result that the byte streams of different file 
formats have their own distinct underlying patterns, but using 
additional format streams allows the detection model to learn 
more complicated patterns so that the model has a chance to 
achieve better performance. 
 
We analysed cases that finally succeeded in malware detection 
using MalConv model trained with HWP+PDF streams but 
failed by the model trained with only HWP streams. We found 
that there are some keywords commonly appeared in HWP and 
PDF streams. For example, a malicious HWP sample of hash 
value ‘e83f8064e’ had a stream containing JavaScript code that 
includes functions such as SaveToFile, RegWrite, 
GetSpecialFolder, push, fromCharCode, parseInt, substr, and 
chart. These functions have turned out to often appear in PDF 
streams as well, so they were used as keyword-based features 
in our previous study [24]. This implies that the model found 
and exploited promising patterns of PDF streams that can be 
used for HWP malware detection. 

VI. CONCLUSION 

In the proposed system, we have implemented an organization-
oriented system that would assist the human resource 
department in short listing the right candidate for a specific 
profile. The system could be used in many business sectors that 
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will require expert candidates, thus reducing the workload of 
the human resource department. 
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