
 INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING, VOL.4, NO.06, JUNE 2023.

RONALD CHRISTIAN C. FAUSTO III., ET.AL.: MODIFIED SHA-3 SIDE-CHANNEL USING YARROW-BASED RANDOM DELAY ON SECURE
COMMUNICATION 162

Modified SHA-3 Side-Channel using Yarrow-Based Random Delay on
Secure Communication

Ronald Christian C. Fausto III 1, Marion Cedric Emanuel V. Tapang 1, Dan Michael
Cortez 2

 1 Student, College of Engineering and Technology, Pamantasan ng Lungsod ng Maynila, Philippines.

 2 Professor, College of Engineering and Technology, Pamantasan ng Lungsod ng Maynila, Philippines.

Corresponding Author: rccfausto18@gmail.com

Abstract: - Secure Hash Algorithm-3 or SHA3 is a hashing algorithm that, when not appropriately implemented, can exhibit
vulnerabilities to side-channel attacks. One type of this attack is a timing analysis attack. It utilizes timing information gained to
obtain the key required for the algorithm. In this study, the researchers proposed a Random Delay implementation with a CSPRNG,
specifically Yarrow CSPRNG, as its number generator, thus creating high-quality randomness that is highly secured from side-
channel attacks, unique timings, and exhibits less predictability. Statistical tests such as the Avalanche Test evaluated the algorithm’s
performance. The test yielded 51.18 percent, and the performance analysis regarding CPU Load and Memory Usage is not far from
a standard implementation of SHA3 and a standard implementation of SHA3 with Random Delay. The results proved that the
proposed performance is cryptographically secure and efficient, as all tests yielded favorable results.

Key Words: —SHA3, Side-Channel, Yarrow, Pseudorandom Number Generator, Random Delay, Performance, Cryptography.

I. INTRODUCTION

Secure communication has become a vital aspect of modern
communication due to the general use of the web and an
increasing need for data privacy and security. The previous
encryption algorithms have been exploited for various attacks,
thus searching for new, more secure methods of protecting
sensitive information [1][2]. One such technique involves using
cryptographic hash functions, mainly used on various security-
related applications, including authentication and digital
signatures [3].

Secure-Hash Algorithm 3 (Keccak) was the declared winner of
the NIST Competition in 2012 [4]. Moreover, it is proven to be
secure and to have solved the major issues of its predecessors.
Despite the impressive enhancements over its predecessors,
studies have been conducted on the Algorithm, and when
implemented incorrectly, it could be prone to side-channel
attacks. One of these side-channel attacks is the Timing
Analysis Attack.

Timing Analysis Attack uses the timing information gained on
the side channel to obtain sensitive information such as the key.
One countermeasure against these Timing Analysis Attacks is
the insertion of a Random Noise or Random Delay in the side
channel. Random Delay insertion disrupts the information
gained in the side channel by inserting randomized noises [5].
The quality of these Random Delays depends on the number
generator used, as the Random Number Generator determines
the randomness, predictability, and security of these random
delays. Using a Pseudorandom Number Generator (PRNG) to
generate the unexpected delay can be a viable solution. Still, a
PRNG is known to exhibit a randomness pattern, thus making
it predictable and not made with security in mind. The previous
concerns can be addressed using a Cryptographically Secure

Manuscript revised June 15, 2023; accepted
June 16, 2023. Date of publication June 18,
2023.
This paper available online at www.ijprse.com
ISSN (Online): 2582-7898; SJIF: 5.59

http://www.ijprse.com/

 INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING, VOL.4, NO.06, JUNE 2023.

RONALD CHRISTIAN C. FAUSTO III., ET.AL.: MODIFIED SHA-3 SIDE-CHANNEL USING YARROW-BASED RANDOM DELAY ON SECURE
COMMUNICATION 163

Pseudorandom Number Generator (CSPRNG). CSPRNG
exhibits highly reliable randomness and security and is less
predictable than PRNG [6]. Aside from this, inserting an
additional operation in a cryptographic operation such as SHA3
can affect the algorithm's performance and cryptographic
strength [7][8].

II. REVIEW OF LITERATURE AND STUDIES
In the field of cryptography, one should prioritize the protection
of user confidentiality, data privacy, and security. It must not
disclose unintended information other than those mainly
involved in the conversation [9]. This information can be
revealed using various kinds of attacks. One of those attacks is
called a side-channel attack. The side-channel attack exploits
the physical characteristics of cryptographic systems to extract
secret information [10]. The SHA3 Algorithm is built to be
resistant to common cryptographic attacks. It is also designed
to address the previous problems of its predecessors. It
demonstrates high unpredictability and is resistant to collision
attacks. While the algorithm is cryptographically secure,
incorrect implementation of the problem could result in
information leaks through timing analysis, power consumption,
and other cyberattacks [11][12].

The insertion of Random Delay can bring an attacker an
inconsistent timing analysis result. Random Delay obscures the
timing information gained, thus making the information gained
by the attacker somehow irrelevant [13]. These Random Delays
must be significant enough to obscure these timing patterns.
The source of randomness used to generate these delays should
be robust and unpredictable to prevent an attacker from
predicting the delay [14]. Depending on the implementation of
these random delays, this can cause transmission errors that can
harm the performance and introduce vulnerabilities. This can
be inhibited and manipulated with a good source of delay as its
deterministic, systematic, and data-dependent [15].

Using a Pseudorandom Number Generator (PRNG) is pivotal
in numerous cryptographic procedures as it introduces high
randomness and unpredictability, thus ensuring high security
[16]. Random Delays are created using generated numbers to
determine the delay intervals. However, PRNGs are
deterministic and can be reproduced if the seed state is known.
A Cryptographically Secure Pseudorandom Number Generator
(CSPRNG) is recommended as the one requirement for a
reliable random delay are the unpredictable random numbers
[17][18]. CSPRNGs exhibit high randomness and

unpredictability compared to PRNGs. Also, CSPRNGs are
created to resist various cryptographic attacks while generating
numbers close to true randomness and being least predictable.
One example of these CSPRNGs is the Yarrow Algorithm. The
Yarrow Algorithm uses two entropy pools: Fast and Slow
Entropy Pools, mixed for its reseeding function, making it a
highly secured random number generator [19].

Table.1. Comparison of PRNG and CSPRNG

Features/
Properties

PRNG
(Pseudorandom
Number Generator)
(As per Von
Neumann, 1951)

CSPRNG
(Cryptographically et al.
Number Generator) (As
per Blum, Blum & Shub,
1986)

Predictability After some time, the
sequence starts
repeating itself,
making it somewhat
predictable.

Infeasible to predict the
following output given all
the previous ones.

Seeding Requires an initial
value or seed to start
the generation
process.

Similar to PRNG, it requires
an initial seed. However,
CSPRNG might be
frequently reseeded to
increase security (Yarrow).

Quality of
Randomness

It might not have a
high level of
randomness.

Ensures a higher level of
randomness than PRNGs, as
per the next-bit-
unpredictability test and the
state compromise
extensions.

Backtracking
Resistance

No built-in
mechanism for
backtracking
resistance.

It has built-in backtracking
resistance, i.e., compromise
of current output does not
compromise past outputs.

Period Length

Period Length
 Often has a
fixed period length
after which the
sequence repeats.

It has a substantial, if not
infinite, period before any
repetition occurs.

Mitigation
against Side-
channel Attacks

It does not offer any
specific feature to
mitigate side-channel
attacks.

Some CSPRNGs provide
mechanisms for mitigating
side-channel attacks.

A requirement to modify these cryptographic mechanisms
should be a complete understanding of the cryptographic
algorithm, as slight changes can weaken a cryptographic
algorithm. Any negligence when implementing these changes

 INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING, VOL.4, NO.06, JUNE 2023.

RONALD CHRISTIAN C. FAUSTO III., ET.AL.: MODIFIED SHA-3 SIDE-CHANNEL USING YARROW-BASED RANDOM DELAY ON SECURE
COMMUNICATION 164

can introduce a vulnerability that an attacker can exploit
[20][21]. The implementation of Random Delay counter-timing
attacks as it adds a computation process to the operation. This
information must be significant enough to obscure the timing
patterns without excessively impacting the algorithm’s
performance [22][23]. Using a well-designed CSPRNG as a
component for Number generation can be an effective defense
against side-channel attacks. Its emphasis on the quality of
pseudorandom numbers reminds us of the importance of robust
randomness in securing cryptographic systems against various
forms of attack.

Table.2. Comparison of Random Delay, PRNG Random Delay, and

CSPRNG Random Delay

Features/
Properties

Standard
Random Delay

PRNG
Random Delay

CSPRNG
Random Delay

Predictability

Highly
predictable as
the delay might
be somewhat
random.

Less predictable
due to using a
PRNG, but it
can still show a
repeating
pattern after
some time.

Least predictable
due to the use of a
CSPRNG,
making it highly
secure.

Uniqueness
of Delay

Delay times
might only be
unique if the
randomness
source is
genuinely
random.

More unique
delay times due
to the PRNG,
but the sequence
may still repeat
after some time.

Most unique
delay times are
due to the
CSPRNG, with a
substantial, if not
infinite, period
before any
repetition occurs.

Resilience to
Timing

Attacks
 Vuln
erable to timing
attacks due to
its predictability

More resistant
to timing attacks
than a simple
random delay,
but still
vulnerable due
to repeating
patterns.

Best resistance to
timing attacks due
to its
unpredictability
and backtracking
resistance.

Complexity

Simplest to
implement as it
does not require
a sophisticated
random number
generator.

More complex
to implement
due to the need
for a PRNG.

Most complex to
implement due to
the need for a
CSPRNG.

Use Case Suitable for
non-critical
applications
where security

More suited to
applications
requiring a
higher level of

They are
primarily used in
high-security
applications

is not a high
priority.

security than
simple random
delay offers, but
not as high as
cryptography
applications.

where the risk of
timing attacks is a
concern.

III. RESEARCH METHODOLOGY

3.1 SHA3 Operations
The SHA3 is known to be secured against most attacks as its
one of the criteria of NIST for choosing the winning algorithm.
However, a poorly implemented SHA3 can introduce potential
attack vulnerabilities, e.g., Fault Analysis and Timing Analysis.
To evaluate the side channel from Timing Attacks, a timing
analysis attack must be introduced to the side channel. A timing
analysis attack is a side-channel attack that aims to collect
information about the time it takes for a system to process
functions and inputs. This timing information, when measured,
can reveal sensitive information about the data being processed.
The information gained through this attack is often used to
unravel the secret keys. Timing Analysis Attacks get the timing
information produced during the application’s runtime where
SHA3 is implemented. The values produced during that time
will be visualized using a statistical tool to determine if
implementing Random Delay to the SHA3 will improve its side
channel.

The SHA3 operates through the use of a function called the
sponge function. This function consists of three primary
operations: Initialization, Absorption, and Squeezing, wherein
the Random Delay will be inserted.

Initialization

In SHA-3, the algorithm’s state is represented as a three-
dimensional array of bits. This state is often visualized as a 5x5
matrix of 64-bit “lanes” for 1600 bits (this is the case in SHA-
3, other Keccak implementations may use different sizes).

Given a message M and a rate parameter r, split M into blocks
of size r bits, denoted as M[1], M[2],..., M[n], where n is the
number of blocks. Then, for each block, I from 1 to n, update
the state S as:

S = S ⊕ pad (M[i])

Equation 1: SHA-3 Initialization Phase

 INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING, VOL.4, NO.06, JUNE 2023.

RONALD CHRISTIAN C. FAUSTO III., ET.AL.: MODIFIED SHA-3 SIDE-CHANNEL USING YARROW-BASED RANDOM DELAY ON SECURE
COMMUNICATION 165

Where ⊕ represents the bitwise XOR operation, and pad is a
padding function that expands M[i] to the size of the state S.

3.2 Absorption

In the absorption phase, the input message is divided into
blocks, each of the same size as the state (1600 bits for SHA-
3). These blocks are XORed into the state, one block at a time.
After each block is XORed, a permutation function, denoted as
f, is applied to the state. The state S is transformed through the
Keccak-f permutation function, wherein it can be denoted as:

S = Keccak – f(S)

Equation 2: SHA-3 Initialization Absorption Phase

3.3 Squeezing

During the squeezing phase, output blocks are read from the
state. The first output block is the first ‘d’ bits of the state
(where ‘d’ is the desired length of the output). If more output
bits are needed, the permutation function ‘f’ is applied to the
state again, and the next ‘d’ bits are read. This continues until
enough output bits have been generated.

Given an output length d, extract and output z blocks of r bits
from the state S, where z is the smallest integer such that r · z ≥
d.

Z[i] = S[i] for i in [1,z]

Equation 3: SHA-3 Initialization Squeezing Phase

Each time a block is extracted, the state S is updated via the
Keccak-f permutation:

S = Keccak – f(S)

The final output is concatenating all Z[i] blocks, truncated to d
bits.

While more output bits are needed:

• Zi = first ‘d’ bits of state (Zi is the i-th output block)
state = f(state)

3.4 Yarrow Algorithm Operations
Yarrow is a Cryptographically Secure Pseudorandom Number
Generator known for its high-quality randomness, ease of
implementation, and other excellent features. The Yarrow
algorithm generates these cryptographically secure
pseudorandom numbers for the improved quality of these
random delays. Yarrow has a four-part process that will be used
in this study.

Initialization

 P0=getrandbits(256)

Equation 4: Yarrow Initialization

Entropy Gathering

P = P ⊕ CryptGenRandom(32)

P = P ⊕ i=1nTimingKeyboardi

P = P ⊕ i=1nMovementMousei

Equation 5: Yarrow Entropy Source Gathering

Where:

• P represents the current state of the pool
• ⊕ represents the bitwise XOR operation.

• CryptGenRandom(32) represents 32 bytes of random
data generated by the CryptGenRandom function

• TimingKeyboard, represents the time between the i-th
and (i-1)-th keypress.

• MovementMouse, represents the i-th recorded mouse
movement.

Reseeding:

P = P ⊕ os.randoms(32)

Equation 6: Yarrow Reseeding

Random Number Generation:

Bytesrequired = length32

RandomBytes = ⨁i=1Bytesrequired P.to_bytes(32,′big′)

P = P ⊕ int(P.to_bytes(32,′big′))

Equation 7: Yarrow Random Number Generation

Where:

• Bytesrequired represents the number of 32-byte blocks
required to meet the requested length

• RandomBytes represents the generated random bytes
• P.to_bytes(32,′big′) represents the current state of the

Pool converted to bytes
• int(P.to_bytes(32,′big′)) represents the current state of

the Pool converted to an integer

 INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING, VOL.4, NO.06, JUNE 2023.

RONALD CHRISTIAN C. FAUSTO III., ET.AL.: MODIFIED SHA-3 SIDE-CHANNEL USING YARROW-BASED RANDOM DELAY ON SECURE
COMMUNICATION 166

Yarrow is a type of CSPRNG that relies heavily on its high and
low entropy pool to generate random numbers. These entropy
sources come from a variety of unpredictable and difficult-to-
manipulate real-world events. Both entropy sources are mixed
into one pool, and Yarrow utilizes this pool for its randomness.
One highly reliable high entropy source is the
CryptGenRandom Function, which exhibits high-quality
randomness. It derives its entropy from various stochastic
system sources, such as system performance counters, system
state data, and cryptographic sources. The authors also
suggested the usage of combined Keyboard Timings, the
precise timing between keys you press on the keyboard, and
Mouse Movement timings, the precise movements of your
mouse, which can be used as a source of entropy for a reliable
low entropy source pool. These entropy sources will then be
mixed into a pool for the Yarrow Algorithm. These two could
be a reliable low entropy source for the Yarrow. [24]

3.5 Random Delay
Random Delay is an implementation in which a random delay
is set within a specific range to create confusion for attackers
utilizing time information.

Formulaic Representation:

Here, D represents the delay time, RD represents the Generated
Random Delay, and W represents Wait for the Delay duration:

D = RD + W.

Equation 8 Random Delay

Generated Random Delay

This is part of the computation wherein the random delay time
will be generated within the predefined range. It can be
represented as follows:

Let RD be the Random Delay function that takes min_delay and
max_delay as inputs.

RD(min_delay, max_delay) = D

Equation 9: Random Delay Generation within the Pre-Defined
Range

D is the delay time, defined as a randomly generated number
between min_delay and max_delay.

Wait for the Delay

After the delay time was chosen from all the random values, the
program will now wait for the chosen duration. It can be
represented as follows:

Wait(D)

Equation 10: Wait for Delay for the Random Delay

The delay time D is determined randomly within the range of
values given in the min_delay and max_delay. This randomness
is what gives the random delay its security properties.

3.6 Testing and Evaluation
This implementation of Yarrow-Based Random Delay to the
SHA3 will be analyzed for performance and security to ensure
that the implementation can be deployed and implementation
will not compromise existing and working frameworks. The
performance analyzers that can help us analyze if this
implementation can truly help are Cryptanalysis, memory
usage, and CPU load. A memory usage test is one software test
that aims to know the application’s memory usage efficiency.
This ensures that the application is not utilizing unnecessary
resources which other applications could use. Memory usage
testing may examine issues such as memory leaks or memory
that is no longer utilized but was not released. It can also
examine this excessive memory usage, which could impact
performance and memory fragmentation. CPU load testing tests
the system under the highest load it will ever need to handle.
This involves running tests that require significant processing
power and monitoring how well the system handles the
workload. CPU load testing ensures the system can handle its
maximum expected load without performance issues or
failures. It is a form of stress testing that pushes the system to
its limits to verify its robustness and reliability under extreme
conditions. Avalanche Test tests the “avalanche effect”
property. Avalanche Effect assumes that an excellent
cryptographic function should drastically change its output,
even at the slightest change. When compared, it should have a
new output that cannot be easily correlated with the old output.

3.7 Yarrow-Based Random Delay
The usage of a simple random delay is highly predictable, has
non-unique delay times, and is vulnerable to attacks due to
these factors. These weaknesses are unsuitable for
implementing sensitive applications such as communications
applications. These kinds of implementations compromise
confidentiality in case an attack happens. The studies
mentioned above about introducing random delay using a
PRNG answer all the concerns above; it is less predictable as it
is pseudorandom, has more unique delays, and is resistant to
attacks. The underlying problem of using a PRNG as its source
of randomness is that a PRNG can repeat a given time. This is
a significant problem that an attacker might utilize to scour data

 INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING, VOL.4, NO.06, JUNE 2023.

RONALD CHRISTIAN C. FAUSTO III., ET.AL.: MODIFIED SHA-3 SIDE-CHANNEL USING YARROW-BASED RANDOM DELAY ON SECURE
COMMUNICATION 167

in the side channel. However, this is solved through the use of
CSPRNG. CSPRNG is a Cryptographically Secure PRNG,
which is a PRNG that is built with security in mind. This has
the properties of a PRNG, but it is more secure. It is the least
predictable among them due to its generation of random
numbers close to True Randomness; it generates unique delays
and will take a very long time before a repetition happens. Since
it is created with security in mind, it resists most known attacks,
including side-channel attacks. Integrating the Yarrow
CSPRNG as the source of randomness for the Random Delay
will significantly increase the security and randomness of the
Random Delay. The main objective of this implementation is to
increase the randomness of the generated random delay, which
will disrupt an attacker performing timing analysis attacks. As
a result, it will exhibit a highly randomized noise during the
execution of the SHA3.

It will start the Yarrow Entropy Gathering process as soon as
the application starts. It will then start mixing the entropy
gained during that process, and as soon as the SHA3 process
starts, the Random Delay will call Yarrow to generate its
Random Numbers for the Random Delay timings. Finally, it
will start generating Random Delays during the SHA3 function,
which will then disrupt the timings for the timing analysis
attack. The whole Yarrow-Based Random Delay process can be
seen in Figure 1 below.

.

Fig.1. Proposed Yarrow-Based Random Delay on SHA3 Side-
Channel

IV. SIMULATION AND RESULTS

4.1 Timing Analysis

Fig.2. Simulation of Timing Analysis using the Yarrow-Based
Random Delay on SHA3 Side-Channel on the communications

application

Fig.3. Simulation of Timing Analysis using a simple Random Delay
on SHA3 Side-Channel on the communications application

 INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING, VOL.4, NO.06, JUNE 2023.

RONALD CHRISTIAN C. FAUSTO III., ET.AL.: MODIFIED SHA-3 SIDE-CHANNEL USING YARROW-BASED RANDOM DELAY ON SECURE
COMMUNICATION 168

Fig.4. Simulation of Timing Analysis on SHA3 Side-Channel on the
Communications application

Figure 4 shows that the SHA-3 Algorithm alone exhibits a
pattern, which can be easily recognized as it repeats itself in a
given period. In Figure 3, the SHA-3 Algorithm with a random
delay integrated into its side channel alone shows a slight
disruption from the pattern. These disruptions, however, are
common, as their results are only occasional. In Figure 2, the
SHA-3 Algorithm with the Yarrow-Based Random Delay
integrated into its side channel exhibits frequent disruption
from the pattern in the previous figures. The timing information
gained can hardly be recognized in the Yarrow-Based Random
Delay implementation on SHA-3 Side-Channel. The Yarrow-
Based Random Delay can disrupt the timing information
obtained through timing analysis attacks.

4.2 Performance Analysis

Fig.5. CPU Load and Performance Analysis of the Communications
application with the Yarrow-Based Random Delay on SHA3 Side-

Channel

Fig.6. CPU Load and Performance Analysis of the Communications
application with the Random Delay on SHA3 Side-Channel

Fig.7. CPU Load and Performance Analysis of the Communications
application on SHA3 Side-Channel

Figure 7 shows that the SHA-3 Algorithm’s Performance in
terms of memory usage and CPU load is not far from the
Performances of Figures 6 and 5. A sharp difference in the spike
levels in Figure 6 and Figure 5 can be observed in the Memory
Usage compared to Figure 7. A behavior change can be
observed in the CPU Load seen in Figure 7. It only spikes when
the SHA3 Operation is called. In Figure 5 and Figure 6, the
CPU load spikes early, even before the SHA3 Operation. The
effect of the implementation in terms of CPU Load and
Memory Usage is close to the standard implementation of
SHA3 on secure communication.

4.3 Cryptanalysis
Cryptanalysis is needed to identify and analyze potential risks
and trade-offs associated with introducing Yarrow-Based
Random Delay in the SHA-3 algorithm, focusing on possible
vulnerabilities to other side-channel attacks or unintended
consequences. Performing a Cryptanalysis is necessary to test
the cryptographic strength of the SHA3 algorithm with the

 INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING, VOL.4, NO.06, JUNE 2023.

RONALD CHRISTIAN C. FAUSTO III., ET.AL.: MODIFIED SHA-3 SIDE-CHANNEL USING YARROW-BASED RANDOM DELAY ON SECURE
COMMUNICATION 169

Yarrow-Based Random Delay. Although no change was
introduced to the SHA3 operations regarding changed
parameters or values, adding a Random Delay between these
operations disrupts the regular operation by introducing this
random timing information that could open vulnerabilities
when incorrectly implemented.
Table.3. Avalanche Test Results

Test
Scenario

SHA3 with Yarrow-
Based Random Delay

Standard
SHA3

Average
Avalanche

Effect

0.51 0.53

The required result for the Avalanche Effect to be considered
successful is 50% above. As shown in the test performed, the
SHA3 with Yarrow-Based Random Delay has an avalanche
score of 0.51 or 51% compared to the 0.52 or 52%, thus
showing that while it improves the security of the SHA3 Side-
Channel, it still retains its cryptographic strength.

V. CONCLUSION AND RECOMMENDATION

5.1 Conclusion
The SHA3 Algorithm, when not implemented correctly, can
exhibit patterns that can be utilized to gain sensitive
information about the used cryptographic algorithm.
Implementing Random Delay to the SHA3 Side-Channel adds
a layer of security but is inconsistent. It can be easily interpreted
as a distraction as the simple Random Delay still exhibits the
pattern created by the SHA3 Algorithm. The enhancement
performed in this study significantly increased the quality of the
randomness, and it cannot be easily discerned as the Random
Delay generated thru the Yarrow-Based Random Delay is a
high-quality randomness. The Memory Usage and the CPU
Load of the implemented enhancement are significantly close
to the performance of the application that uses the SHA3 alone
without any Random Delay inserted in its operations, and it also
passed cryptanalysis. The Yarrow-Based Random Delay is a
highly secured implementation that can provide
countermeasures against a timing analysis attack on a secure
communication that uses the SHA3 algorithm as its
Cryptographic Algorithm.

5.2 Recommendation
The researchers recommend using constant time
implementation, masking techniques, and other

implementations alongside the random delay further to increase
the security of the SHA3 side channel. The researchers also
recommend performing other attacks against the SHA3 side
channel to test if the implementation is suitable for other side-
channel attacks.

ACKNOWLEDGMENTS:

The researchers would like to acknowledge and warmly thank
our advisor and professors in PLM who made this study
possible. The researchers would also like to express our deepest
gratitude to our family for their continuous support. We
dedicate this study to the Almighty God for giving us the
strength to overcome our difficulties.

REFERENCES
[1]. Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A.

(1996). Handbook of Applied Cryptography.
[2]. Rebeiro, C., Mukhopadhyay, D., & Bhattacharya, S. (2011).

Timing Channel Attacks: A Survey on Cache Based Side
Channel Attacks (Cryptology et al. 2011/578).

[3]. Rivest, R. (1992). The MD5 Message-Digest Algorithm.
Internet Engineering Task Force (IETF), RFC 1321.

[4]. Daemen, J., & Bertoni, G. (2011, January). The Keccak
SHA-3 Submission [Online submission to NIST (Round 3)].

[5]. Kocher, P. (1996). Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems. In
Advances in Cryptology – CRYPTO ’96 (pp. 104–113).
Springer-Verlag.

[6]. Ferguson, N., Schneier, B., & Kohno, T. (2010).
Cryptography Engineering: Design Principles and Practical
Applications.

[7]. Bucci, M., Luzzi, R., Guglielmo, M., & Trifiletti, A. (n.d.).
A Countermeasure against Differential Power Analysis
Based on Random Delay Insertion. 2005 IEEE International
Symposium on Circuits and Systems.

[8]. Mangard, S., Oswald, E., & Popp, T. (2007). Power Analysis
Attacks: Revealing the Secrets of Smart Cards. Springer.

[9]. Saribekyan, H., & Margvelashvili, A. (2017, May 18).
Security Analysis of Telegram.

[10]. Oren, Y., Kemerlis, V. P., Sethumadhavan, S., & Keromytis,
A. D. (2015). The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications.

[11]. Daemen, J., & Rijmen, V. (2010). Understanding
Cryptography: A Textbook for Students and Practitioners. In
C. Paar & J. Pelzl (Eds.), Cryptographic Hash Functions (pp.
107-128). Springer.

[12]. Paar, C., & Pelzl, J. (2010). Understanding Cryptography: A
Textbook for Students and Practitioners.

[13]. Bhunia, S., & Tehranipoor, M. M. (2017). Hardware
Security: Design, Threats, and Safeguards.

 INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING, VOL.4, NO.06, JUNE 2023.

RONALD CHRISTIAN C. FAUSTO III., ET.AL.: MODIFIED SHA-3 SIDE-CHANNEL USING YARROW-BASED RANDOM DELAY ON SECURE
COMMUNICATION 170

[14]. Bloemer, J., & Otto, M. (2006). Securing RSA against Fault
Analysis by Double Addition Chain Exponentiation.

[15]. Hancock, J. (2004). Jitter—Understanding it, Measuring It,
Eliminating It: Part 1: Jitter Fundamentals. Agilent
Technologies.

[16]. Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A.
(1996). Handbook of Applied Cryptography.

[17]. Gentle, E. (1998) Random Number Generation and Monte
Carlo Methods.

[18]. Markantonakis, K., & Mayes, K. (2017). Secure Smart
Embedded Devices, Platforms and Applications.

[19]. Schneier, B. (1994). Applied Cryptography: Protocols,
Algorithms, and Source Code in C.

[20]. National Institute of Standards and Technology (NIST),
(2012). Recommendation for Random Number Generation
Using Deterministic Random Bit Generators (Revised).

[21]. Tillich, S., & Großschädl, J. (2010). SHA-3 candidates and
side-channel attack security.

[22]. Zhang, L., Kong, Y., Guo, Y., Yan, J., & Wang, Z. (2018).
Survey on network flow watermarking: model,
interferences, applications, technologies and security.IET
Communications, 12(14), 1639–1648.

[23]. Bloemer, J., & Otto, M. (2006). Securing RSA against Fault
Analysis by Double Addition Chain Exponentiation.

[24]. Kelsey, J., Schneier, B., & Ferguson, N. (1999). Yarrow-
160: Notes on the Design and Analysis of the Yarrow
Cryptographic Pseudorandom Number Generator. In Sixth
Annual Workshop on Selected Areas in Cryptography.

	I. Introduction
	Secure communication has become a vital aspect of modern communication due to the general use of the web and an increasing need for data privacy and security. The previous encryption algorithms have been exploited for various attacks, thus searching f...
	Secure-Hash Algorithm 3 (Keccak) was the declared winner of the NIST Competition in 2012 [4]. Moreover, it is proven to be secure and to have solved the major issues of its predecessors. Despite the impressive enhancements over its predecessors, studi...
	Timing Analysis Attack uses the timing information gained on the side channel to obtain sensitive information such as the key. One countermeasure against these Timing Analysis Attacks is the insertion of a Random Noise or Random Delay in the side chan...
	II. Review of literature and studies
	III. Research Methodology
	3.1 SHA3 Operations
	3.4 Yarrow Algorithm Operations
	3.5 Random Delay
	3.6 Testing and Evaluation
	3.7 Yarrow-Based Random Delay

	IV. Simulation and results
	4.1 Timing Analysis
	4.2 Performance Analysis
	4.3 Cryptanalysis

	V. Conclusion and recommendation
	5.1 Conclusion
	5.2 Recommendation

	Acknowledgments:
	References

